Bootstrap selection of ridge regularization parameter: a comparative study via a simulation study

In multiple linear regressions, it is known that least-squares estimates of the parameters are likely to be too large in absolute value and possibly of wrong sign, if explanatory variables are corr...

[1]  A. E. Hoerl,et al.  Ridge regression iterative estimation of the biasing parameter , 1976 .

[2]  Sajid Ali,et al.  A comparison of some new and old robust ridge regression estimators , 2021, Commun. Stat. Simul. Comput..

[3]  Mahmude Ozkale Predictive performance of linear regression models , 2015 .

[4]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[5]  Gilbert A. Churchill,et al.  A Comparison of Ridge Estimators , 1978 .

[6]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[7]  D. Freedman Bootstrapping Regression Models , 1981 .

[8]  Ka Yiu Wong,et al.  An iterative approach to minimize the mean squared error in ridge regression , 2015, Comput. Stat..

[9]  L. Firinguetti A generalized ridge regression estimator and its finite sample properties , 1999 .

[10]  Kristofer Månsson,et al.  Modified Ridge Regression Estimators , 2013 .

[11]  C. Thiart,et al.  A simulation study of biased estimators against the ordinary least squares estimator , 1993 .

[12]  Fassil Nebebe,et al.  The relative performances of improved ridge estimators and an empirical bayes estimator: some monte carlo results , 1990 .

[13]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[14]  J. Lawless,et al.  A simulation study of ridge and other regression estimators , 1976 .

[15]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[16]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[17]  C. L. Mallows Some Comments onCp , 1973 .

[18]  R. R. Hocking,et al.  A Class of Biased Estimators in Linear Regression , 1976 .

[19]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[20]  Vidya Raju,et al.  A class of generalized ridge estimators , 2017, Commun. Stat. Simul. Comput..

[21]  G. C. McDonald,et al.  Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .

[22]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[23]  S. Chatterjee,et al.  Use of the Bootstrap and Cross-validation in Ridge Regression , 1986 .

[24]  G. Khalaf,et al.  Choosing Ridge Parameter for Regression Problems , 2005 .

[25]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[26]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[27]  Ramadan M. Hamed,et al.  Selection of the Ridge Parameter Using Mathematical Programming , 2013, Commun. Stat. Simul. Comput..

[28]  R. Tibshirani,et al.  The problem of regions , 1998 .

[29]  M. A. Alkhamisi,et al.  A Monte Carlo Study of Recent Ridge Parameters , 2007, Commun. Stat. Simul. Comput..

[30]  N. J. Delaney,et al.  A note on collinearity, bootstrapping, and cross-validation , 1987 .