First-principles calculations of structural, elastic and electronic properties of second phases and solid solutions in Ti–Al–V alloys

[1]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[2]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[3]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[4]  J. J. Rausch,et al.  Titanium-Rich Corner of the Ti-Al-V System , 1956 .

[5]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[6]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[7]  A. Inoue,et al.  Microstructure and mechanical properties of metastable fcc phase wires in Mn-Al-C system manufactured by in-rotating-water spinning method , 1983 .

[8]  M. Payne,et al.  Finite basis set corrections to total energy pseudopotential calculations , 1990 .

[9]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[10]  C. M. Wayman,et al.  Atomic ordering in TiVAl shape memory alloys , 1991 .

[11]  Jianlin Shi,et al.  Improving the ductility of γ(TiAl) based alloy by introducing disordered β phase , 1992 .

[12]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[13]  Wills,et al.  Theory of elastic constants of cubic transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[14]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[15]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[16]  N. Schell,et al.  Structural mechanisms of the mechanical degradation of Ti–Al–V alloys: in situ study during annealing , 2000 .

[17]  K. Ishida,et al.  Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys , 2000 .

[18]  D. Vanderbilt,et al.  Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites , 1999, cond-mat/9908364.

[19]  Fan Zhang,et al.  The PANDAT software package and its applications , 2002 .

[20]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[21]  Wei Wu,et al.  Geometric and electronic structure of Ti2AlX (x=v, Nb, or Ta) , 2003 .

[22]  S. Lakiza,et al.  Stable and Metastable Phase Relations in the System Alumina–Zirconia–Yttria , 2005 .

[23]  Y. Birol Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy , 2005 .

[24]  H. Somekawa,et al.  Effect of solid-solution strengthening on fracture toughness in extruded Mg–Zn alloys , 2006 .

[25]  H. Kim,et al.  Mechanical Property and Elastic Modulus of Metastable Ti-Nb Based Alloys with Si Addition , 2007 .

[26]  Chao Jiang First-principles study of ternary bcc alloys using special quasi-random structures , 2009 .

[27]  Leilei Xu,et al.  Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds , 2010 .

[28]  A. Chiba,et al.  Phase transformation and age-hardening of hexagonal α′ martensite in Ti–12 mass%V–2 mass%Al alloys studied by transmission electron microscopy , 2010 .

[29]  L. Wen,et al.  First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy , 2010 .

[30]  R. Boyer Attributes, characteristics, and applications of titanium and its alloys , 2010 .

[31]  J. Nie Precipitation and Hardening in Magnesium Alloys , 2012, Metallurgical and Materials Transactions A.

[32]  Yuhong Zhao,et al.  Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations , 2012 .

[33]  Yosslen Aray,et al.  Topological study of charge density in AlTi, AlTi_{3} and Al_{3}Ti intermetallics , 2012, J. Comput. Methods Sci. Eng..

[34]  S. Dai,et al.  Influence of Zr content on microstructure and mechanical properties of implant Ti–35Nb–4Sn–6Mo–xZr alloys , 2013 .

[35]  D. Kent,et al.  Effects of phase stability and processing on the mechanical properties of Ti-Nb based β Ti alloys. , 2013, Journal of the mechanical behavior of biomedical materials.

[36]  Bing Zhao,et al.  Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy , 2013 .

[37]  P. Mao,et al.  First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg–Zn–Ca–Cu alloy , 2013 .

[38]  Ying Yu,et al.  Combination study of DFT calculation and experiment for photocatalytic properties of S-doped anatase TiO2 , 2014 .

[39]  Rajamallu Karre,et al.  First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[40]  T. Lippmann,et al.  Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions , 2015 .

[41]  M. Yan,et al.  First-principles investigation of structural, mechanical and electronic properties for Cu–Ti intermetallics , 2016 .

[42]  T. Tian,et al.  Origin of ultralow Young׳s modulus in a metastable β-type Ti-33Nb-4Sn alloy. , 2016, Journal of the mechanical behavior of biomedical materials.

[43]  Junyang He,et al.  SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS , 2016 .

[44]  Yuhong Zhao,et al.  Effect of Zr, Hf, and Sn additives on elastic properties of α2-Ti3Al phase by first-principles calculations , 2017, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[45]  K. Aslantaş,et al.  Effect of cryogenic and aging treatments on low-energy impact behaviour of Ti–6Al–4V alloy , 2017 .

[46]  P. Berthet,et al.  Superconductivity, pseudo-gap, and stripe correlations in high-T c cuprates , 2017 .

[47]  W. M. Rainforth,et al.  Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate , 2018, Acta Materialia.

[48]  Wei He,et al.  First principles studies on the elastic, thermodynamic properties and electronic structure of Ti 15-x Mo x Sn compounds , 2018 .

[49]  Y. Murayama,et al.  Phase Stability and Mechanical Properties of Metastable Ti-X-Sn-Zr (x=Cr, Nb or Fe) Alloys , 2018, Materials Science Forum.