Reparameterized and Marginalized Posterior and Predictive Sampling for Complex Bayesian Geostatistical Models

This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[3]  Bradley P. Carlin,et al.  Re-considering the variance parameterization in multiple precision models , 2007 .

[4]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[5]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[6]  Mary Kathryn Cowles,et al.  Correlating point‐referenced radon and areal uranium data arising from a common spatial process , 2007 .

[7]  Bradley P. Carlin,et al.  Structured Markov Chain Monte Carlo , 2000 .

[8]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[9]  Bradley P Carlin,et al.  spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. , 2007, Journal of statistical software.

[10]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[11]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[12]  Shaowen Wang,et al.  Parallelizing MCMC for Bayesian spatiotemporal geostatistical models , 2007, Stat. Comput..

[13]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[14]  Mary Kathryn Cowles,et al.  Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps , 2008 .

[15]  H. Coxeter,et al.  Introduction to Geometry. , 1961 .

[16]  J. Hodges Some algebra and geometry for hierarchical models, applied to diagnostics , 1998 .

[17]  Brian J. Smith,et al.  boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference , 2007 .

[18]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[19]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[20]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[21]  A. Shapiro Monte Carlo Sampling Methods , 2003 .