Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain
暂无分享,去创建一个
[1] G. Nakamura,et al. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain , 2015 .
[2] Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces , 2014 .
[3] Fucai Li,et al. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces , 2014, 1408.0171.
[4] E. Feireisl,et al. Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system inunbounded domains , 2013 .
[5] Song Jiang,et al. Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary , 2013 .
[6] Song Jiang,et al. Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system , 2012 .
[7] Yeping Li. Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations , 2012 .
[8] Song Jiang,et al. Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations , 2011, 1105.0729.
[9] Qiangchang Ju,et al. Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Vanishing Viscosity Coefficients , 2010, SIAM J. Math. Anal..
[10] Boris Haspot,et al. Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids , 2010, 1005.0706.
[11] Raphaël Danchin,et al. A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .
[12] Qionglei Chen,et al. Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.
[13] Song Jiang,et al. Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Periodic Boundary Conditions , 2009, 1010.5296.
[14] Dehua Wang,et al. Low Mach Number Limit of Viscous Compressible Magnetohydrodynamic Flows , 2009, SIAM J. Math. Anal..
[15] R. Danchin. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .
[16] Raphaël Danchin,et al. On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .
[17] R. Danchin,et al. Zero Mach number limit for compressible flows with periodic boundary conditions , 2002 .
[18] R. Danchin. LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .
[19] N. Masmoudi. Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .
[20] Raphaël Danchin,et al. Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .
[21] I. Gallagher. Applications of Schochet's methods to parabolic equations , 1998 .
[22] S. Schochet. Fast Singular Limits of Hyperbolic PDEs , 1994 .
[23] R. Danchin. Zero Mach number limit in critical spaces for compressible Navier–Stokes equations , 2002 .
[24] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .