Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain

This paper studies the convergence of the compressible isentropic magnetohydrodynamic equations to the corresponding incompressiblemagnetohydrodynamic equations with ill-prepared initial data in a periodic domain.We prove that the solution to the compressible isentropic magnetohydrodynamic equations with small Mach number exists uniformly in the time interval as long as that to the incompressible one does. Furthermore,we obtain the convergence result for the solutions filtered by the group of acoustics.

[1]  G. Nakamura,et al.  Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain , 2015 .

[2]  Yanmin Mu Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces , 2014 .

[3]  Fucai Li,et al.  Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces , 2014, 1408.0171.

[4]  E. Feireisl,et al.  Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system inunbounded domains , 2013 .

[5]  Song Jiang,et al.  Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary , 2013 .

[6]  Song Jiang,et al.  Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system , 2012 .

[7]  Yeping Li Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations , 2012 .

[8]  Song Jiang,et al.  Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations , 2011, 1105.0729.

[9]  Qiangchang Ju,et al.  Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Vanishing Viscosity Coefficients , 2010, SIAM J. Math. Anal..

[10]  Boris Haspot,et al.  Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids , 2010, 1005.0706.

[11]  Raphaël Danchin,et al.  A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .

[12]  Qionglei Chen,et al.  Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.

[13]  Song Jiang,et al.  Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Periodic Boundary Conditions , 2009, 1010.5296.

[14]  Dehua Wang,et al.  Low Mach Number Limit of Viscous Compressible Magnetohydrodynamic Flows , 2009, SIAM J. Math. Anal..

[15]  R. Danchin Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .

[16]  Raphaël Danchin,et al.  On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .

[17]  R. Danchin,et al.  Zero Mach number limit for compressible flows with periodic boundary conditions , 2002 .

[18]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[19]  N. Masmoudi Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .

[20]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[21]  I. Gallagher Applications of Schochet's methods to parabolic equations , 1998 .

[22]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[23]  R. Danchin Zero Mach number limit in critical spaces for compressible Navier–Stokes equations , 2002 .

[24]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .