CXCR4 stimulates macropinocytosis: implications for cellular uptake of arginine-rich cell-penetrating peptides and HIV.

[1]  M. Pooga,et al.  Scavenger receptor‐mediated uptake of cell‐penetrating peptide nanocomplexes with oligonucleotides , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  Z. Bozsó,et al.  Cell-penetrating peptide exploited syndecans. , 2010, Biochimica et biophysica acta.

[3]  M. Oyama,et al.  Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1 , 2010, Nature.

[4]  Yuntao Wu,et al.  Chemokine Coreceptor Signaling in HIV-1 Infection and Pathogenesis , 2009, PLoS pathogens.

[5]  S. Futaki,et al.  Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  Ari Helenius,et al.  Virus entry by macropinocytosis , 2009, Nature Cell Biology.

[7]  Li Wu,et al.  Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells. , 2008, Virology.

[8]  L. Dong,et al.  HIV Envelope-CXCR4 Signaling Activates Cofilin to Overcome Cortical Actin Restriction in Resting CD4 T Cells , 2008, Cell.

[9]  Yoshiaki Yano,et al.  Coiled-coil tag--probe system for quick labeling of membrane receptors in living cell. , 2008, ACS chemical biology.

[10]  A. Helenius,et al.  Vaccinia Virus Uses Macropinocytosis and Apoptotic Mimicry to Enter Host Cells , 2008, Science.

[11]  P. Wender,et al.  The design of guanidinium-rich transporters and their internalization mechanisms. , 2008, Advanced drug delivery reviews.

[12]  S. Futaki,et al.  Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. , 2008, Bioconjugate chemistry.

[13]  G. Divita,et al.  First step of the cell‐penetrating peptide mechanism involves Rac1 GTPase‐dependent actin‐network remodelling , 2007, Biology of the cell.

[14]  M. Yáñez-Mó,et al.  Myosin IIA is involved in the endocytosis of CXCR4 induced by SDF-1α , 2007, Journal of Cell Science.

[15]  S. Futaki,et al.  Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. , 2007, Biochemistry.

[16]  E. Clementi,et al.  Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events , 2006, Journal of Cell Science.

[17]  Y. Sadakane,et al.  Simple and versatile method for tagging phenyldiazirine photophores. , 2006, Journal of the American Chemical Society.

[18]  A. Otaka,et al.  Development of anti-HIV agents targeting dynamic supramolecular mechanism: entry and fusion inhibitors based on CXCR4/CCR5 antagonists and gp41-C34-remodeling peptides. , 2005, Current HIV research.

[19]  Jeremy C Simpson,et al.  Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[20]  R. Stan,et al.  Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway , 2004, Journal of Cell Science.

[21]  Séverine Brulé,et al.  A syndecan-4/CXCR4 complex expressed on human primary lymphocytes and macrophages and HeLa cell line binds the CXC chemokine stromal cell-derived factor-1 (SDF-1). , 2004, Glycobiology.

[22]  Steven F Dowdy,et al.  Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis , 2004, Nature Medicine.

[23]  S. Venkatesan,et al.  Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. , 2003, Molecular biology of the cell.

[24]  Stephen C Peiper,et al.  Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. , 2003, Angewandte Chemie.

[25]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[26]  R. Jaussi,et al.  HIV TAT Basic Peptide Is Not a High-Affinity Ligand for VEGF Receptor 2 , 2003, Biological chemistry.

[27]  U. Greber,et al.  Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake , 2002, The Journal of cell biology.

[28]  J. Broach,et al.  A Point Mutation That Confers Constitutive Activity to CXCR4 Reveals That T140 Is an Inverse Agonist and That AMD3100 and ALX40-4C Are Weak Partial Agonists* , 2002, The Journal of Biological Chemistry.

[29]  A. Ager,et al.  Activation of pertussis toxin‐sensitive CXCL12 (SDF‐1) receptors mediates transendothelial migration of T lymphocytes across lymph node high endothelial cells , 2002, European journal of immunology.

[30]  C. Voermans,et al.  SDF-1-induced actin polymerization and migration in human hematopoietic progenitor cells. , 2001, Experimental hematology.

[31]  M. Prevost,et al.  Human Immunodeficiency Virus Type 1 Entry into Macrophages Mediated by Macropinocytosis , 2001, Journal of Virology.

[32]  L. Kanz,et al.  Transendothelial Migration of Hematopoietic Progenitor Cells , 2001 .

[33]  M. Matsuoka,et al.  4′-Ethynyl Nucleoside Analogs: Potent Inhibitors of Multidrug-Resistant Human Immunodeficiency Virus Variants In Vitro , 2001, Antimicrobial Agents and Chemotherapy.

[34]  R. Doms,et al.  Safe use of the CXCR4 inhibitor ALX40-4C in humans. , 2001, AIDS research and human retroviruses.

[35]  W. Greene,et al.  Human Immunodeficiency Virus Type 1 Nef Functions at the Level of Virus Entry by Enhancing Cytoplasmic Delivery of Virions , 2001, Journal of Virology.

[36]  S. Futaki,et al.  Arginine-rich Peptides , 2001, The Journal of Biological Chemistry.

[37]  H. Xiao,et al.  Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. L. Penn,et al.  Viral Entry through CXCR4 Is a Pathogenic Factor and Therapeutic Target in Human Immunodeficiency Virus Type 1 Disease , 2000, Journal of Virology.

[39]  S. Mundell,et al.  Trafficking of the HIV Coreceptor CXCR4 , 1999, The Journal of Biological Chemistry.

[40]  J. Hoxie,et al.  Phorbol Esters and SDF-1 Induce Rapid Endocytosis and Down Modulation of the Chemokine Receptor CXCR4 , 1997, The Journal of cell biology.

[41]  R. Doms,et al.  A Small-molecule Inhibitor Directed against the Chemokine Receptor CXCR4 Prevents its Use as an HIV-1 Coreceptor , 1997, The Journal of experimental medicine.

[42]  S. Sozzani,et al.  Tat-human immunodeficiency virus-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1. , 1997, Blood.

[43]  M. Ishihara Biosynthesis, Structure, and Biological Activity of Basic FGF Binding Domains of Heparan Sulfate , 1993 .

[44]  M. Emerman,et al.  Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene , 1992, Journal of virology.

[45]  J Desmyter,et al.  Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. , 1988, Journal of virological methods.

[46]  N. Yamamoto,et al.  Selective cytotoxicity of aids virus infection towards HTLV‐I‐transformed cell lines , 1985, International journal of cancer.

[47]  S. Sarafianos,et al.  2'-deoxy-4'-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. , 2008, The international journal of biochemistry & cell biology.

[48]  S. Futaki Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. , 2006, Biopolymers.

[49]  M. Hashimoto,et al.  Cross-linking chemistry and biology: development of multifunctional photoaffinity probes. , 2005, Chemical record.