Overview of the visual system of Tarsius.

Tarsiers, which are currently considered to constitute the sister group of anthropoid primates, exhibit a number of morphological specializations such as remarkably large eyes, big ears, long hind legs, and a nearly naked tail. Here we provide an overview of the current state of knowledge on the tarsier visual system and describe recent anatomical observations from our laboratory. Its large eyes notwithstanding, the most remarkable feature of the tarsier brain is the large size and distinct lamination of area V1. Based on the need of tarsier for optimal scotopic vision and acuity to detect small prey in low lighting conditions, tarsiers may have preserved a high level of visual acuity by enlarging V1 at the expense of other areas. The other classically described visual regions are present in tarsier, albeit many borders are not clearly distinct on histochemical or immunohistochemical preparations. Tarsiers also have a large number and unusual distributions of cones in the retina, with high numbers of M/L-cones in the central retina and S-cones surprisingly at the periphery, which may be sensitive to UV light and may be useful for prey detection. These adaptive specializations may together account for the unique nocturnal predatory requirements of tarsiers.

[1]  Iwona Stepniewska,et al.  The Pulvinar Complex , 2003 .

[2]  J. Kaas,et al.  The Primate visual system , 2003 .

[3]  J. Schmitz,et al.  The colugo (Cynocephalus variegatus, Dermoptera): the primates' gliding sister? , 2002, Molecular biology and evolution.

[4]  A. Hendrickson,et al.  Nocturnal tarsier retina has both short and long/medium‐wavelength cones in an unusual topography , 2000, The Journal of comparative neurology.

[5]  Ross.,et al.  Biomechanics of mammalian feeding and primate evolution , 2000, American journal of physical anthropology.

[6]  J. Kaas,et al.  Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys , 2000, Visual Neuroscience.

[7]  Jon H. Kaas,et al.  Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .

[8]  J. Kaas,et al.  Cortical organization in shrews: Evidence from five species , 1999, The Journal of comparative neurology.

[9]  J. Kaas,et al.  Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys , 1997, Visual Neuroscience.

[10]  V. Casagrande,et al.  Distribution of calcium‐binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus) , 1995, The Journal of comparative neurology.

[11]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[12]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[13]  Tao Qi,et al.  A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China , 1994, Nature.

[14]  J. Allman,et al.  Laminar organization of acetylcholinesterase and cytochrome oxidase in the lateral geniculate nucleus of prosimians , 1993, Neuroscience.

[15]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[16]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[17]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[18]  A. Hendrickson Dots, stripes and columns in monkey visual cortex , 1985, Trends in Neurosciences.

[19]  K. Rockland,et al.  The distribution of cholinesterase and cytochrome oxidase within the dorsal lateral geniculate nucleus of the squirrel monkey , 1983, Brain Research.

[20]  W Fries,et al.  Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  I. T. Diamond,et al.  Distribution of acetylcholinesterase in the geniculo striate system of Galago senegalensis and Aotus trivirgatus: Evidence for the origin of the reaction product in the lateral geniculate body , 1980, The Journal of comparative neurology.

[22]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[23]  J. Kaas,et al.  The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase , 1978, The Journal of comparative neurology.

[24]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[25]  J. Kaas,et al.  Connections of striate cortex in the prosimian, galago senegalensis , 1978, The Journal of comparative neurology.

[26]  S. Washburn The evolution of man. , 1978, Scientific American.

[27]  W. B. Spatz An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix , 1975, Brain Research.

[28]  J. Allman,et al.  Discontinuities in the dorsal lateral geniculate nucleus corresponding to the optic disc: A comparative study , 1973, The Journal of comparative neurology.

[29]  L. Wolin,et al.  Characteristics of the ocular fundus in primates. , 1967, Journal of Anatomy.

[30]  Paul G. Roofe,et al.  The Vertebrate Visual System , 1958, Neurology.

[31]  London,et al.  Parson's “Diseases of the Eye” , 1954 .

[32]  Gerhardt von Bonin,et al.  The isocortex of tarsius , 1951, The Journal of comparative neurology.

[33]  Clark We The Thalamus of Tarsius. , 1930 .

[34]  F. Tilney The brain stem of Tarsius. A critical comparison with other primates , 1927 .

[35]  W. Zeeman,et al.  Zeitschriftenübersicht , 1926, Deutsche Zeitschrift für Nervenheilkunde.

[36]  H. Woollard NOTES ON THE RETINA AND LATERAL GENICULATE BODY IN TUPAIA, TARSIUS, NYCTICEBUS AND HAPALE , 1926 .

[37]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[38]  V. Casagrande,et al.  The Afferent , Intrinsic , and Efferent Connections of Primary Visual Cortex in Primates , 2005 .

[39]  C. Ross The Tarsier Fovea: Functionless Vestige or Nocturnal Adaptation? , 2004 .

[40]  R. F. Kay,et al.  Anthropoid Origins: Retrospective and Prospective , 2004 .

[41]  J. Allman,et al.  The Distribution and Size of Retinal Ganglion Cells in Microcebus murinus, Cheirogaleus medius, and Tarsius syrichta: Implications for the Evolution of Sensory Systems in Primates , 2004 .

[42]  R. Martin Palaeontology: Chinese lantern for early primates , 2004, Nature.

[43]  J. Kaas,et al.  Visual cortex organization in primates: theories of V3 and adjoining visual areas. , 2001, Progress in brain research.

[44]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[45]  T. Preuss,et al.  Subdivisions of the motor and somatosensory thalamus of primates revealed with Wisteria floribunda agglutinin histochemistry. , 1998, Somatosensory & motor research.

[46]  J. Kaas Theories of Visual Cortex Organization in Primates , 1997 .

[47]  Todd M. Preuss,et al.  Cytochrome oxidase 'blobs' and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. , 1996, Brain, behavior and evolution.

[48]  J. Pettigrew,et al.  Unusual pattern of retinogeniculate projections in the controversial primate Tarsius. , 1996, Brain, behavior and evolution.

[49]  C. Ross Adaptive explanation for the origins of the anthropoidea (primates) , 1996, American journal of primatology.

[50]  J. Kaas,et al.  Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucang). , 1993, Brain, behavior and evolution.

[51]  R. M. Simmons The morphology of the diencephalon in the Prosimii. III. The Tarsioidea. , 1982, Journal fur Hirnforschung.

[52]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[53]  R W Guillery,et al.  Some principles of organization in the dorsal lateral geniculate nucleus. , 1972, Brain, behavior and evolution.

[54]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[55]  W. Andrew The vertebrate visual system , 1957 .

[56]  J. Cunningham Evolution of Man , 1950, Nature.

[57]  W. E. Clark The Thalamus of Tarsius. , 1930, Journal of anatomy.

[58]  W. K. Gregory I. On the relationship of the Eocene lemur Notharctus to the Adapidæ and to other primates: II. On the classification and phylogeny of the Lemuroidea , 1915 .