Nonlinear channel modeling and identification using baseband Volterra-Parafac models

Baseband Volterra models are very useful for representing nonlinear communication channels. These models present the specificity to include only odd-order nonlinear terms, with kernels characterized by a double symmetry. The main drawback is their parametric complexity. In this paper, we develop a new class of Volterra models, called baseband Volterra-Parafac models, with a reduced parametric complexity, by using a doubly symmetric Parafac decomposition of high order Volterra kernels viewed as tensors. Three adaptive algorithms are then proposed for estimating the parameters of these models. Some Monte Carlo simulation results are presented to compare the performance of the proposed estimation algorithms, in the case of third-order baseband Volterra systems excited by PSK and QAM inputs.

[1]  Thomas Bouilloc,et al.  Parametric reduction complexity of Volterra models using tensor decompositions , 2009 .

[2]  Gérard Favier,et al.  Identification of PARAFAC-Volterra cubic models using an Alternating Recursive Least Squares algorithm , 2004, 2004 12th European Signal Processing Conference.

[3]  Roland Badeau,et al.  Fast orthogonal decomposition of Volterra cubic kernels using oblique unfolding , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Gérard Favier,et al.  Parametric complexity reduction of Volterra models using tensor decompositions , 2009, 2009 17th European Signal Processing Conference.

[5]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[6]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[7]  Sergio Benedetto,et al.  Nonlinear Equalization of Digital Satellite Channels , 1982, IEEE J. Sel. Areas Commun..

[8]  Gérard Favier,et al.  Selection of generalized orthonormal bases for second-order Volterra filters , 2005, Signal Process..

[9]  S. Benedetto,et al.  Modeling and Performance Evaluation of Nonlinear Satellite Links-A Volterra Series Approach , 1979, IEEE Transactions on Aerospace and Electronic Systems.

[10]  J.C. Pedro,et al.  Pruning the Volterra Series for Behavioral Modeling of Power Amplifiers Using Physical Knowledge , 2007, IEEE Transactions on Microwave Theory and Techniques.

[11]  Rifat Hacioglu,et al.  Reduced Complexity Volterra Models for Nonlinear System Identification , 2001, EURASIP J. Adv. Signal Process..

[12]  Gérard Favier,et al.  Identification de modèles de Volterra basée sur la décomposition PARAFAC de leurs noyaux et le filtre de Kalman étendu , 2006, Traitement du Signal.

[13]  João Cesar M. Mota,et al.  Blind identification of multiuser nonlinear channels using tensor decomposition and precoding , 2009, Signal Process..

[14]  Carlos Alexandre R. Fernandes,et al.  MIMO Volterra Modeling for Nonlinear Communication Channels , 2010 .

[15]  Nicholas Kalouptsidis,et al.  Input-output identification of nonlinear channels using PSK, QAM and OFDM inputs , 2009, Signal Process..

[16]  Carlos Crespo-Cadenas,et al.  A New Approach to Pruning Volterra Models for Power Amplifiers , 2010, IEEE Transactions on Signal Processing.

[17]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[18]  Edward J. Powers,et al.  Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs , 2001, IEEE Trans. Signal Process..

[19]  Ricardo J. G. B. Campello,et al.  Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions , 2007, Autom..

[20]  Wagner Caradori do Amaral,et al.  CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS , 2005 .

[21]  Gérard Favier,et al.  Laguerre-Volterra Filters Optimization Based on Laguerre Spectra , 2005, 2005 13th European Signal Processing Conference.

[22]  A. Kibangou,et al.  Nonlinear system modeling and identification using Volterra‐PARAFAC models , 2012 .