Higher‐order hybrid‐mixed axisymmetric thick shell element for vibration analysis

In this study, we present free vibration analysis of shells of revolution using the hybrid-mixed finite element. The present hybrid-mixed element, which is based on the modified Hellinger–Reissner variational principle, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out by the Guyan reduction. Several numerical examples show that the present element with cubic displacement interpolation functions and consistent quadratic stress functions is highly accurate for the free vibration analysis of shells of revolution, especially for higher vibration modes. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  S. C. Fan,et al.  General free vibration analysis of shells of revolution using the spline finite element method , 1989 .

[2]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[3]  Y. Kim,et al.  Modified Mixed Variational Principle and the State-Vector Equation for Elastic Bodies and Shells of Revolution , 1992 .

[4]  O. C. Zienkiewicz,et al.  A simple and efficient element for axisymmetric shells , 1977 .

[5]  H. Kunieda Flexural axisymmetric free vibrations of a spherical dome: Exact results and approximate solutions , 1984 .

[6]  Ahmed K. Noor,et al.  Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams , 1981 .

[7]  T. Hughes,et al.  On mixed finite element methods for axisymmetric shell analysis , 1989 .

[8]  G. Prathap The Finite Element Method in Structural Mechanics , 1993 .

[9]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[10]  Wolf Altman,et al.  Vibration of thin shells of revolution based on a mixed finite element formulation , 1986 .

[11]  Gangan Prathap,et al.  A field consistent three‐noded quadratic curved axisymmetric shell element , 1986 .

[12]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[13]  R. T. Wang,et al.  Studies of an axisymmetric thin shell finite element for vibration analysis , 1990 .

[14]  Jin Gon Kim,et al.  A higher-order hybrid-mixed harmonic shell-of-revolution element , 2000 .

[15]  Gen Yamada,et al.  Free vibration of a conical shell with variable thickness , 1982 .

[16]  Salman H. Abu-Sitta,et al.  Free Vibration of Hyperbolic Cooling Towers , 1971 .

[17]  Yoon Young Kim,et al.  A new higher‐order hybrid‐mixed curved beam element , 1998 .

[18]  Alexander Tessler,et al.  Resolving membrane and shear locking phenomena in curved shear‐deformable axisymmetric shell elements , 1988 .

[19]  A. V. Singh On Vibrations of Shells of Revolution Using Bezier Polynomials , 1991 .

[20]  Phillip L. Gould,et al.  Free Vibration of Shells of Revolution Using FEM , 1974 .