Spectroscopic Investigations of [FeFe] Hydrogenase Maturated with [(57)Fe2(adt)(CN)2(CO)4](2-).

The preparation and spectroscopic characterization of a CO-inhibited [FeFe] hydrogenase with a selectively (57)Fe-labeled binuclear subsite is described. The precursor [(57)Fe2(adt)(CN)2(CO)4](2-) was synthesized from the (57)Fe metal, S8, CO, (NEt4)CN, NH4Cl, and CH2O. (Et4N)2[(57)Fe2(adt)(CN)2(CO)4] was then used for the maturation of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii, to yield the enzyme selectively labeled at the [2Fe]H subcluster. Complementary (57)Fe enrichment of the [4Fe-4S]H cluster was realized by reconstitution with (57)FeCl3 and Na2S. The Hox-CO state of [2(57)Fe]H and [4(57)Fe-4S]H HydA1 was characterized by Mössbauer, HYSCORE, ENDOR, and nuclear resonance vibrational spectroscopy.

[1]  W. Lubitz,et al.  Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity. , 2015, Biochemistry.

[2]  W. Lubitz,et al.  Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. , 2015, Physical chemistry chemical physics : PCCP.

[3]  J. W. Peters,et al.  [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. , 2015, Journal of the American Chemical Society.

[4]  J. W. Peters,et al.  Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. , 2014, Journal of the American Chemical Society.

[5]  W. Lubitz,et al.  New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. , 2014, Journal of the American Chemical Society.

[6]  J. W. Peters,et al.  [FeFe]-hydrogenase maturation. , 2014, Biochemistry.

[7]  W. Myers,et al.  The HydG Enzyme Generates an Fe(CO)2(CN) Synthon in Assembly of the FeFe Hydrogenase H-Cluster , 2014, Science.

[8]  W. Lubitz,et al.  Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. , 2013, Nature chemical biology.

[9]  W. Lubitz,et al.  Biomimetic assembly and activation of [FeFe]-hydrogenases , 2013, Nature.

[10]  W. Myers,et al.  Nuclear resonance vibrational spectroscopy and electron paramagnetic resonance spectroscopy of 57Fe-enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster. , 2013, Biochemistry.

[11]  D. Byrne,et al.  Observation of the Fe-CN and Fe-CO vibrations in the active site of [NiFe] hydrogenase by nuclear resonance vibrational spectroscopy. , 2013, Angewandte Chemie.

[12]  J. W. Peters,et al.  Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. , 2012, Annual review of biochemistry.

[13]  W. Lubitz,et al.  Importance of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases , 2011, The Journal of Biological Chemistry.

[14]  J. Swartz,et al.  Cell-free H-cluster Synthesis and [FeFe] Hydrogenase Activation: All Five CO and CN− Ligands Derive from Tyrosine , 2011, PloS one.

[15]  J. Swartz,et al.  High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli , 2010, PloS one.

[16]  J. W. Peters,et al.  Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG , 2010, Nature.

[17]  N. Lehnert,et al.  Vibrational analysis of the model complex (mu-edt)[Fe(CO)(3)](2) and comparison to iron-only hydrogenase: the activation scale of hydrogenase model systems. , 2010, Inorganic chemistry.

[18]  W. Lubitz,et al.  Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe-4S] clusters in photosystem I. , 2009, Biochimica et biophysica acta.

[19]  J. W. Peters,et al.  Activation of HydA(DeltaEFG) requires a preformed [4Fe-4S] cluster. , 2009, Biochemistry.

[20]  C. Pickett,et al.  Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. , 2009, Chemical reviews.

[21]  D. Case,et al.  Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). , 2008, Inorganic chemistry.

[22]  W. Lubitz,et al.  The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study. , 2007, Journal of the American Chemical Society.

[23]  W. Brennessel,et al.  Bis(1,2,3,4-eta4-anthracene)ferrate(1-): a paramagnetic homoleptic polyarene transition-metal anion. , 2007, Angewandte Chemie.

[24]  T. Rauchfuss,et al.  Studies on the Condensation Pathway to and Properties of Diiron Azadithiolate Carbonyls. , 2007, Organometallics.

[25]  D. W. Thompson,et al.  Iron(II) Halides , 2007 .

[26]  T. Rauchfuss,et al.  Fe2(S2)(CO)6 and Fe3Te2(CO)9,10 , 2007 .

[27]  M. Fontecave,et al.  Biochemical characterization of the HydE and HydG iron‐only hydrogenase maturation enzymes from Thermatoga maritima , 2005, FEBS letters.

[28]  Michel Frey,et al.  Hydrogenases: Hydrogen‐Activating Enzymes , 2002, Chembiochem : a European journal of chemical biology.

[29]  A. Kaminski,et al.  Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. , 2002, European journal of biochemistry.

[30]  Hongxiang Li,et al.  Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases. , 2002, Journal of the American Chemical Society.

[31]  T. Rauchfuss,et al.  Synthetic and structural studies on [Fe2(SR)2(CN)x(CO)6-x](x-) as active site models for Fe-only hydrogenases. , 2001, Journal of the American Chemical Society.

[32]  J. Moura,et al.  Mössbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase. , 2001, Journal of the American Chemical Society.

[33]  V. Fernández,et al.  Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. , 2001, Journal of the American Chemical Society.

[34]  M. Periasamy,et al.  Reactive Iron Carbonyl Species via Reduction of FeCl3 with NaBH4 in the Presence of CO: Conversion of 1-Alkynes to Benzoquinones and Cyclobutenediones , 2000 .

[35]  B. J. Lemon,et al.  Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. , 1999, Biochemistry.

[36]  E. Münck,et al.  Electronic Structure of the H Cluster in [Fe]-Hydrogenases , 1999 .

[37]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[38]  J. Naber,et al.  Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. , 1993, European journal of biochemistry.

[39]  E. Reijerse,et al.  Hyperfine sublevel correlation spectroscopy (HYSCORE ) of disordered solids , 1992 .

[40]  M. Periasamy,et al.  A simple, direct synthesis of Na2Fe(CO)4 , 1991 .

[41]  J. Hyde,et al.  Pseudo field modulation in EPR spectroscopy , 1990 .

[42]  M. Adams,et al.  Mössbauer study of Clostridium pasteurianum hydrogenase II. Evidence for a novel three-iron cluster. , 1987, The Journal of biological chemistry.

[43]  Michael Mehring,et al.  Hyperfine sublevel correlation (hyscore) spectroscopy: a 2D ESR investigation of the squaric acid radical , 1986 .

[44]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[45]  J. Rush,et al.  Interpretation of the Mössbauer spectra of the four-iron ferredoxin from Bacillus stearothermophilus. , 1978, European journal of biochemistry.

[46]  E. R. Davies,et al.  A new pulse endor technique , 1974 .

[47]  W. Lubitz,et al.  A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. , 2012, Journal of magnetic resonance.

[48]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[49]  R. Hance,et al.  Facile Synthesis of 57Fe(CO)5 , 1980 .

[50]  F. Seel SECTION 4 – Carbonyl and Nitrosyl Compounds , 1965 .