Evaluating system change options and timing using the epoch syncopation framework

Complex engineering systems face many unknowns with respect to their operating contexts and time-varying stakeholder needs over their lifespan. A useful means for partitioning this problem is to consider a set of static snapshots of contexts with accompanying stakeholder needs over fixed periods of time, herein called “epochs.” Designs can be optimized towards delivering stakeholder utility in a specific epoch or across a variety of epochs. In order to consider the uncertain sequence of epochs experienced by a system, the Epoch Syncopation Framework (ESF) is introduced in this paper. This framework, using Monte Carlo analysis and Markov probability matrices, analyzes the execution of potential system “change mechanisms,” which alter a system over time to respond to epoch shifts. Through an analysis of design tradespaces, the ESF takes into account performance, schedule, cost, and uncertainty regarding experienced epoch shifts. The intended contributions of the ESF include a set of useful baseline designs, desirable change mechanisms, and strategies for executing change mechanisms across a system lifespan. The ESF is demonstrated through an application to an existing dataset containing designs for a “space tug” satellite including its set of potential epochs.