CDO pricing with nested Archimedean copulas

Companies in the same industry sector are usually more correlated than firms in different sectors, as they are similarly affected by macroeconomic effects, political decisions, and consumer trends. Despite the many stock return models taking this fact into account, there are only a few credit default models that take it into consideration. In this paper we present a default model based on nested Archimedean copulas that is able to capture hierarchical dependence structures among the obligors in a credit portfolio. Nested Archimedean copulas have a surprisingly simple and intuitive interpretation. The dependence among all companies in the same sector is described by an inner copula and the sectors are then coupled via an outer copula. Consequently, our model implies a larger default correlation for companies in the same industry sector than for companies in different sectors. A calibration to CDO tranche spreads of the European iTraxx portfolio is performed to demonstrate the fitting capability of the model. This portfolio consists of CDS on 125 companies from six different industry sectors and is therefore an excellent portfolio for a comparison of our generalized model with a traditional copula model of the same family that does not take different sectors into account.

[1]  K. Shadan,et al.  Available online: , 2012 .

[2]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[3]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[4]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[5]  F. Oberhettinger,et al.  Tables of Laplace Transforms , 1973 .

[6]  C. Kimberling A probabilistic interpretation of complete monotonicity , 1974 .

[7]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[8]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[9]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[10]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[11]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[12]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[13]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[14]  Douglas J. Lucas Default Correlation and Credit Analysis , 1995 .

[15]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[16]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[17]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[18]  Shaun S. Wang,et al.  “Understanding Relationships Using Copulas,” Edward Frees and Emiliano Valdez, January 1998 , 1999 .

[19]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[20]  Joel L. Schiff,et al.  The Laplace Transform , 1999 .

[21]  J. Schiff The Laplace Transform: Theory and Applications , 1999 .

[22]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[23]  David X. Li On Default Correlation , 2000 .

[24]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[25]  P. Schönbucher,et al.  Copula-Dependent Defaults in Intensity Models , 2001 .

[26]  P. J. Schonbucher Credit Derivatives Pricing Models , 2003 .

[27]  T. Bielecki,et al.  Credit Risk: Modeling, Valuation And Hedging , 2004 .

[28]  Alan White,et al.  The Valuation of Correlation-Dependent Credit Derivatives Using a Structural Model , 2005 .

[29]  Roger B. Nelsen,et al.  Dependence Modeling with Archimedean Copulas , 2005 .

[30]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[31]  Ralf Werner,et al.  The Normal Inverse Gaussian Distribution for Synthetic CDO Pricing , 2007 .

[32]  Wim Schoutens,et al.  A Generic One-Factor Lévy Model for Pricing Synthetic CDOs , 2007 .

[33]  Marius Hofert,et al.  Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..

[34]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[35]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[36]  Matthias Scherer,et al.  Credit portfolio modelling in structural models with jumps , 2011 .

[37]  Paul Embrechts,et al.  Comments on: Inference in multivariate Archimedean copula models , 2011 .

[38]  Marius Hofert,et al.  Efficiently sampling nested Archimedean copulas , 2011, Comput. Stat. Data Anal..

[39]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[40]  Martin Eling,et al.  Dependence modeling in non-life insurance using the Bernstein copula , 2012 .

[41]  Jan-Frederik Mai,et al.  Default models based on scale mixtures of Marshall-Olkin copulas: properties and applications , 2013 .