CDO pricing with nested Archimedean copulas
暂无分享,去创建一个
[1] K. Shadan,et al. Available online: , 2012 .
[2] D. Widder,et al. The Laplace Transform , 1943, The Mathematical Gazette.
[3] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[4] P. A. P. Moran,et al. An introduction to probability theory , 1968 .
[5] F. Oberhettinger,et al. Tables of Laplace Transforms , 1973 .
[6] C. Kimberling. A probabilistic interpretation of complete monotonicity , 1974 .
[7] M. J. Frank. On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .
[8] M. J. Frank. On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .
[9] M. J. Frank. On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .
[10] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[11] Christian Genest,et al. Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .
[12] I. Olkin,et al. Families of Multivariate Distributions , 1988 .
[13] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[14] Douglas J. Lucas. Default Correlation and Credit Analysis , 1995 .
[15] Charles M. Grinstead,et al. Introduction to probability , 1999, Statistics for the Behavioural Sciences.
[16] Emiliano A. Valdez,et al. Understanding Relationships Using Copulas , 1998 .
[17] Satishs Iyengar,et al. Multivariate Models and Dependence Concepts , 1998 .
[18] Shaun S. Wang,et al. “Understanding Relationships Using Copulas,” Edward Frees and Emiliano Valdez, January 1998 , 1999 .
[19] David X. Li. On Default Correlation: A Copula Function Approach , 1999 .
[20] Joel L. Schiff,et al. The Laplace Transform , 1999 .
[21] J. Schiff. The Laplace Transform: Theory and Applications , 1999 .
[22] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.
[23] David X. Li. On Default Correlation , 2000 .
[24] J. L. Nolan. Stable Distributions. Models for Heavy Tailed Data , 2001 .
[25] P. Schönbucher,et al. Copula-Dependent Defaults in Intensity Models , 2001 .
[26] P. J. Schonbucher. Credit Derivatives Pricing Models , 2003 .
[27] T. Bielecki,et al. Credit Risk: Modeling, Valuation And Hedging , 2004 .
[28] Alan White,et al. The Valuation of Correlation-Dependent Credit Derivatives Using a Structural Model , 2005 .
[29] Roger B. Nelsen,et al. Dependence Modeling with Archimedean Copulas , 2005 .
[30] Christine M. Anderson-Cook,et al. Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.
[31] Ralf Werner,et al. The Normal Inverse Gaussian Distribution for Synthetic CDO Pricing , 2007 .
[32] Wim Schoutens,et al. A Generic One-Factor Lévy Model for Pricing Synthetic CDOs , 2007 .
[33] Marius Hofert,et al. Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..
[34] A. McNeil. Sampling nested Archimedean copulas , 2008 .
[35] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[36] Matthias Scherer,et al. Credit portfolio modelling in structural models with jumps , 2011 .
[37] Paul Embrechts,et al. Comments on: Inference in multivariate Archimedean copula models , 2011 .
[38] Marius Hofert,et al. Efficiently sampling nested Archimedean copulas , 2011, Comput. Stat. Data Anal..
[39] Paul Embrechts,et al. Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.
[40] Martin Eling,et al. Dependence modeling in non-life insurance using the Bernstein copula , 2012 .
[41] Jan-Frederik Mai,et al. Default models based on scale mixtures of Marshall-Olkin copulas: properties and applications , 2013 .