Segmented flow generator for serial crystallography at the European X-ray free electron laser

[1]  Robert Ky Cheng,et al.  Towards an Optimal Sample Delivery Method for Serial Crystallography at XFEL , 2020, Crystals.

[2]  H. Chapman,et al.  Ultracompact 3D microfluidics for time-resolved structural biology , 2020, Nature Communications.

[3]  H. Chapman,et al.  Time-Resolved Serial Femtosecond Crystallography at the European XFEL , 2019, Nature Methods.

[4]  Steffen Hauf,et al.  Membrane protein megahertz crystallography at the European XFEL , 2019, Nature Communications.

[5]  Diana C. F. Monteiro,et al.  Evaluation of serial crystallographic structure determination within megahertz pulse trains , 2019, Structural dynamics.

[6]  Anton Barty,et al.  XGANDALF – extended gradient descent algorithm for lattice finding , 2019, Acta crystallographica. Section A, Foundations and advances.

[7]  S. Boutet,et al.  3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. , 2019, Journal of applied crystallography.

[8]  G. Bourenkov,et al.  Liquid application method for time-resolved analyses by serial synchrotron crystallography , 2019, Nature Methods.

[9]  A. Ros,et al.  Electric Triggering for Enhanced Control of Droplet Generation. , 2019, Analytical chemistry.

[10]  A. Ros,et al.  Microfluidic sample delivery for serial crystallography using XFELs , 2019, Analytical and Bioanalytical Chemistry.

[11]  R. Neutze,et al.  Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. , 2019, Annual review of biochemistry.

[12]  S. Boutet,et al.  Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin , 2019, Nature Communications.

[13]  Marcin Sikorski,et al.  The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation1 , 2019, Journal of synchrotron radiation.

[14]  M Sikorski,et al.  A versatile liquid-jet setup for the European XFEL1 , 2019, Journal of synchrotron radiation.

[15]  Thomas A White,et al.  Processing serial crystallography data with CrystFEL: a step-by-step guide , 2019, Acta crystallographica. Section D, Structural biology.

[16]  Nicholas K. Sauter,et al.  Structures of the intermediates of Kok’s photosynthetic water oxidation clock , 2018, Nature.

[17]  Steffen Hauf,et al.  Megahertz serial crystallography , 2018, Nature Communications.

[18]  S. Boutet,et al.  Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase , 2018, Proceedings of the National Academy of Sciences.

[19]  Steffen Hauf,et al.  Megahertz data collection from protein microcrystals at an X-ray free-electron laser , 2018, Nature Communications.

[20]  Roberto Dinapoli,et al.  The Adaptive Gain Integrating Pixel Detector at the European XFEL , 2018, Journal of synchrotron radiation.

[21]  H. Chapman,et al.  Rapid sample delivery for megahertz serial crystallography at X-ray FELs , 2018, IUCrJ.

[22]  A. Barty,et al.  Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser , 2018, Science.

[23]  N. Tîmneanu,et al.  Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission , 2017, IUCrJ.

[24]  V. Cherezov,et al.  A Bright Future for Serial Femtosecond Crystallography with XFELs. , 2017, Trends in biochemical sciences.

[25]  V. Šrajer,et al.  Watching proteins function with time-resolved x-ray crystallography , 2017, Journal of physics D: Applied physics.

[26]  Waldemar Koprek,et al.  SwissFEL: The Swiss X-ray Free Electron Laser , 2017, Applied Sciences.

[27]  O. Nureki,et al.  Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature , 2017, Scientific Reports.

[28]  Oliver P. Ernst,et al.  Low-dose fixed-target serial synchrotron crystallography , 2017, Acta crystallographica. Section D, Structural biology.

[29]  Anton Barty,et al.  Double-flow focused liquid injector for efficient serial femtosecond crystallography , 2017, Scientific Reports.

[30]  Uwe Bergmann,et al.  Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers , 2017, Nature Methods.

[31]  Takashi Kameshima,et al.  Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL , 2017, Nature.

[32]  Takashi Kameshima,et al.  A three-dimensional movie of structural changes in bacteriorhodopsin , 2016, Science.

[33]  Marcin Sikorski,et al.  Structure of photosystem II and substrate binding at room temperature , 2016, Nature.

[34]  Jaehyun Park,et al.  Current status of the CXI beamline at the PAL-XFEL , 2016 .

[35]  David I Stuart,et al.  Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. , 2016, Acta crystallographica. Section D, Structural biology.

[36]  Petra Fromme,et al.  Serial femtosecond crystallography: A revolution in structural biology. , 2016, Archives of biochemistry and biophysics.

[37]  Martin Warmer,et al.  Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering , 2016, Journal of applied crystallography.

[38]  H. Chapman,et al.  Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.

[39]  A. Kuczewski,et al.  Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. , 2016, Structure.

[40]  Y. Joti,et al.  Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. , 2016, Acta crystallographica. Section D, Structural biology.

[41]  Anton Barty,et al.  Recent developments in CrystFEL , 2016, Journal of applied crystallography.

[42]  Sarah E J Bowman,et al.  Metalloprotein Crystallography: More than a Structure , 2016, Accounts of chemical research.

[43]  Shuheng Zhang,et al.  Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics , 2015 .

[44]  Sébastien Boutet,et al.  Concentric-Flow Electrokinetic Injector Enables Serial Crystallography of Ribosome and Photosystem-II , 2015, Nature Methods.

[45]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[46]  Brian Nutter,et al.  A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources , 2015, Journal of synchrotron radiation.

[47]  Sébastien Boutet,et al.  A novel inert crystal delivery medium for serial femtosecond crystallography , 2015, IUCrJ.

[48]  C. David,et al.  A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering , 2015, Scientific Reports.

[49]  Anton Barty,et al.  Fixed-target protein serial microcrystallography with an x-ray free electron laser , 2014, Scientific Reports.

[50]  P. Fromme,et al.  Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  Uwe Weierstall,et al.  Liquid sample delivery techniques for serial femtosecond crystallography , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[53]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[54]  Ranganathan Kumar,et al.  Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction , 2014 .

[55]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[56]  Garth J. Williams,et al.  Serial Femtosecond Crystallography of G Protein–Coupled Receptors , 2013, Science.

[57]  Petra Fromme,et al.  Dielectrophoretic sorting of membrane protein nanocrystals. , 2013, ACS nano.

[58]  Hirotada Ohashi,et al.  Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA , 2013 .

[59]  A. Leslie,et al.  Autoindexing diffraction images with iMosflm , 2013, Acta crystallographica. Section D, Biological crystallography.

[60]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[61]  Daniel Beisel,et al.  An anti-settling sample delivery instrument for serial femtosecond crystallography , 2012 .

[62]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[63]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.

[64]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[65]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[66]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[67]  Amit Gupta,et al.  Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect , 2010 .

[68]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[69]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[70]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[71]  H. Sinn,et al.  Coherence properties of the European XFEL , 2010 .

[72]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[73]  S. Anna,et al.  Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Jianhong Xu,et al.  Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping , 2008 .

[75]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[76]  N. Adir,et al.  Crystal structures of Escherichia coli KDO8P synthase complexes reveal the source of catalytic irreversibility. , 2005, Journal of molecular biology.

[77]  P. Dastidar,et al.  Structure and Mechanism of 3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase* , 2000, The Journal of Biological Chemistry.

[78]  Alfonso M. Gañán-Calvo,et al.  Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams , 1998 .

[79]  Albert J. M. Duisenberg,et al.  Indexing in single‐crystal diffractometry with an obstinate list of reflections , 1992 .

[80]  Steffen Hauf,et al.  Data Analysis Support in Karabo at European XFEL , 2018 .

[81]  J. Paul Robinson,et al.  Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. , 2018, Nature chemistry.

[82]  J. Coe Life In Motion: Visualizing Biomacromolecules By Time-Resolved Serial Femtosecond Crystallography , 2018 .

[83]  C. Conrad Overcoming Barriers in Structural Biology Through Method Development of Serial Crystallography , 2016 .

[84]  C.Youngman,et al.  Software Development for High Speed Data Recording and Processing , 2013 .

[85]  Ein Forschungszentrum der Helmholtz-Gemeinschaft DEUTSCHES ELEKTRONEN-SYNCHROTRON , 2010 .

[86]  G. Luo,et al.  Correlations of droplet formation in T-junction microfluidic devices : from squeezing to dripping , 2008 .