Kinetics of organic matter degradation in the Murchison meteorite for the evaluation of parent‐body temperature history

Abstract– To evaluate kinetic parameters for thermal degradation of organic matter, in situ heating experiments of insoluble organic matter (IOM) and bulk of Murchison (CM2) meteorite were conducted under Fourier transform infrared micro-spectroscopy combined with a heating stage. Decreases of aliphatic C–H band area under Ar flow were well fitted with Ginstling-Brounshtein three-dimensional diffusion model, and the rate constants for decreases of aliphatic C–H were determined. Activation energies Ea and frequency factors A obtained from these rate constants at different temperatures using the Arrhenius equation were Ea = 109 ± 3 kJ mol−1 and A = 8.7 × 104 s−1 for IOM, and Ea = 61 ± 6 kJ mol−1 and A = 3.8 s−1 for bulk, respectively. Activation energy values of aliphatic C–H decrease are larger for IOM than bulk. Hence, the mineral assemblage of the Murchison meteorite might have catalytic effects for the organic matter degradation. Using obtained kinetic expressions, the time scale for metamorphism can be estimated for a given temperature with aliphatic C–H band area, or the temperature of metamorphism can be estimated for a given time scale. For example, using the obtained kinetic parameters of IOM, aliphatic C–H is lost approximately within 200 years at 100 °C and 100 Myr at 0 °C. Assuming alteration period of 7.5 Myr, alteration temperatures could be calculated to be <15 ± 12 °C. Aliphatic C–H decrease profiles in a parent body can be estimated using time–temperature history model. The kinetic expression obtained by the infrared spectral band of aliphatic C–H could be used as an alternative method to evaluate thermal processes of organic matter in carbonaceous chondrites.

[1]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[2]  R Shipp,et al.  Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. , 1987, Geochimica et cosmochimica acta.

[3]  T. Murae FT-IR spectroscopic studies of major organic matter in carbonaceous chondrites using microscopic technique and comparison with terrestrial kerogen , 1994 .

[4]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[5]  R. M. Barrer XCIII. Diffusion in spherical shells, and a new method of measuring the thermal diffusivity constant , 1944 .

[6]  J. Eiler,et al.  Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .

[7]  E. Young The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Wilhelm Jander,et al.  Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen , 1927 .

[9]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[10]  Sumiko Matsuoka,et al.  Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .

[11]  H. Yabuta,et al.  Solid‐state 13C NMR characterization of insoluble organic matter from Antarctic CM2 chondrites: Evaluation of the meteoritic alteration level , 2005 .

[12]  P. Ehrenfreund,et al.  Comparison of interstellar and meteoritic organic matter at 3.4 microns , 1991 .

[13]  S. Vyazovkin,et al.  Kinetics in solids. , 1997, Annual review of physical chemistry.

[14]  Tomoki Nakamura,et al.  Evaluating the thermal metamorphism of CM chondrites by using the pyrolytic behavior of carbonaceous macromolecular matter , 2002 .

[15]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[16]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[17]  Larry R. Nittler,et al.  Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy , 2007 .

[18]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[19]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[20]  George J. Flynn,et al.  FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium , 2004 .

[21]  J. Davis,et al.  Catalytic effect of smectite clays in hydrocarbon generation revealed by pyrolysis-gas chromatography , 1982 .

[22]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[23]  G. J. Flynn,et al.  The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles , 2006 .

[24]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[25]  T. Wdowiak,et al.  Insoluble organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. , 1988, The Astrophysical journal.

[26]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[27]  M. Maurel,et al.  The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  Tomoki Nakamura Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .

[29]  K. Yanai,et al.  Yamato-86720: A CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism , 1989 .

[30]  M. Zolensky,et al.  Metamorphosed CM and CI Carbonaceous Chondrites Could be from the Breakup of the Same Earth-crossing Asteroid , 2005 .

[31]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[32]  M. Zolensky,et al.  Yamato 86029: Aqueously altered and thermally metamorphosed CI‐like chondrite with unusual textures , 2003 .

[33]  Y. Kissin,et al.  Hydrocarbon components in carbonaceous meteorites , 2003 .

[34]  J. Akai T-T-T diagram of serpentine and saponite, and estimation ofmetamorphic heating degree of Antarctic carbonaceous chondrites , 1992 .

[35]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[36]  Tomoki Nakamura,et al.  Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites , 2008 .

[37]  H. Naraoka,et al.  A chemical sequence of macromolecular organic matter in the CM chondrites , 2004 .

[38]  S. Pizzarello The Chemistry That Preceded Life's Origin: A Study Guide from Meteorites , 2007, Chemistry & biodiversity.

[39]  E. Quirico,et al.  Metamorphic grade of organic matter in six unequilibrated ordinary chondrites , 2003 .

[40]  K. Harada,et al.  Examination of organic compounds from insoluble organic matter isolated from some Antarctic carbonaceous chondrites by heating experiments , 1993 .

[41]  A. Aboulkas,et al.  Kinetic and mechanism of Tarfaya (Morocco) oil shale and LDPE mixture pyrolysis , 2008 .

[42]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[43]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[44]  Tomoki Nakamura Yamato 793321 CM chondrite: Dehydrated regolith material of a hydrous asteroid , 2006 .

[45]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[46]  F. HulbertS Models for solid-state reactions in powdered compacts : A review. , 1969 .

[47]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[48]  P. Ehrenfreund,et al.  Similarity of the infrared spectrum of an Orgueil organic polymer with interstellar organic compounds in the line of sight towards IRS 7. , 1992, Advances in space research : the official journal of the Committee on Space Research.