Trace of the Wishart Matrix and Applications

The trace of a Wishart matrix, either central or non-central, has important roles in various multi-variate statistical questions. We review several expressions of its distribution given in the literature, establish some new results and provide a discussion on computing methods on the distribution of the ratio: the largest eigenvalue to trace.

[1]  Gérard Letac,et al.  All Invariant Moments of the Wishart Distribution , 2004 .

[2]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[3]  A. W. Davis On the ratios of the individual latent roots to the trace of a Wishart matrix , 1972 .

[4]  T. Pham-Gia,et al.  Exact distribution of the generalized Wilks's statistic and applications , 2008 .

[5]  J. Mauchly Significance Test for Sphericity of a Normal $n$-Variate Distribution , 1940 .

[6]  J. Wesolowski,et al.  Lauricella and Humbert functions through probabilistic tools , 2009 .

[7]  A. M. Mathai,et al.  Hypergeometric functions of many matrix variables and distributions of generalized quadratic forms , 1996 .

[8]  Kazuhiko Aomoto,et al.  Theory of Hypergeometric Functions , 2011 .

[9]  Boaz Nadler,et al.  On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix , 2011, J. Multivar. Anal..

[10]  S. J. Press,et al.  LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES' , 1966 .

[11]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[12]  A. M. Mathai,et al.  Further results on the trace of a noncentral wishart matrix , 1982 .

[13]  B. Sturmfels,et al.  Grbner Deformations of Hypergeometric Differential Equations , 2000 .

[14]  T. Pham-Gia,et al.  System availability in a gamma alternating renewal process , 1999 .

[15]  Ronald E. Glaser,et al.  The Ratio of the Geometric Mean to the Arithmetic Mean for a Random Sample from a Gamma Distribution , 1976 .

[16]  Leon Jay Gleser,et al.  A Note on the Sphericity Test , 1966 .

[17]  Arak M. Mathai,et al.  Moments of the trace of a noncentral wishart matrix , 1980 .

[18]  W. Conradie,et al.  The distribution of the ratios of characteristics roots (condition numbers) and their applications in principal component or ridge regression , 1986 .

[19]  Ronald E. Glaser,et al.  A Characterization of Bartlett's statistic involving incomplete beta functions , 1980 .

[20]  H. Ruben,et al.  Probability Content of Regions Under Spherical Normal Distributions, IV: The Distribution of Homogeneous and Non-Homogeneous Quadratic Functions of Normal Variables , 1961 .

[21]  I. Gelfand,et al.  HYPERGEOMETRIC FUNCTIONS, TORIC VARIETIES AND NEWTON POLYHEDRA , 1991 .

[22]  J. G. Saw Expectation of Elementary Symmetric Functions of a Wishart Matrix , 1973 .

[23]  T. Pham-Gia,et al.  Distributions of Ratios: From Random Variables to Random Matrices , 2011 .

[24]  N. Turkkan,et al.  Testing a covariance matrix: exact null distribution of its likelihood criterion , 2009 .

[25]  P. Krishnaiah,et al.  On the evaluation of some distributions that arise in simultaneous tests for the equality of the latent roots of the covariance matrix , 1974 .

[26]  N. Turkkan,et al.  Testing sphericity using small samples , 2010 .

[27]  S. Provost,et al.  The exact distribution of indefinite quadratic forms in noncentral normal vectors , 1996 .

[28]  ON EXACT NON-NULL DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR SPHERICITY TEST AND EQUALITY OF TWO , 2016 .

[29]  ON THE TRACE OF A WISHART. , 2018, Communications in statistics: theory and methods.

[30]  D. Harville On the Distribution of Linear Combinations of Non-central Chi-Squares , 1971 .

[31]  C. Khatri,et al.  Proof of Conjectures About the Expected Values of the Elementary Symmetric Functions of a Noncentral Wishart Matrix , 1974 .

[32]  Arak M. Mathai,et al.  THE non‐null distribution of the likelihood ratio criterion for testing the hypothesis that the covariance matrix is diagonal , 1977 .

[33]  Ning Wang,et al.  Probability density function of logarithmic ratio of arithmetic mean to geometric mean for Nakagami-m fading power , 2010, 2010 25th Biennial Symposium on Communications.

[34]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[35]  Keith E. Muller,et al.  Approximate Power for Repeated-Measures ANOVA Lacking Sphericity , 1989 .

[36]  Distribution of product and quotient of Bessel function variates , 1969 .

[37]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[38]  R. Gutiérrez-Jáimez,et al.  On Wishart distribution: Some extensions , 2011 .

[39]  D. J. de Waal,et al.  On the Expected Values of the Elementary Symmetric Functions of a Noncentral Wishart Matrix , 1972 .