Identifying miRNAs, targets and functions

microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and further inferring miRNA functions have been a critical strategy for understanding normal biological processes of miRNAs and their roles in the development of disease. In this review, we focus on computational methods of inferring miRNA functions, including miRNA functional annotation and inferring miRNA regulatory modules, by integrating heterogeneous data sources. We also briefly introduce the research in miRNA discovery and miRNA-target identification with an emphasis on the challenges to computational biology.

[1]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  T. Kealey Genome:The Autobiography of a Species in 23 Chapters , 2000, Nature Genetics.

[4]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[5]  J. Venter,et al.  Genome: The Autobiography of a Species in 23 Chapters , 2000, Nature Medicine.

[6]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[7]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[8]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[9]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[10]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[11]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[12]  Peter L. Hammer,et al.  Consensus algorithms for the generation of all maximal bicliques , 2004, Discret. Appl. Math..

[13]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[14]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[15]  Peter A. Flach,et al.  Subgroup Discovery with CN2-SD , 2004, J. Mach. Learn. Res..

[16]  Thomas L. Griffiths,et al.  Probabilistic author-topic models for information discovery , 2004, KDD.

[17]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[18]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[19]  Giovanni De Micheli,et al.  Prediction of regulatory modules comprising microRNAs and target genes , 2005, ECCB/JBI.

[20]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[21]  Isaac Bentwich Available online , 2005 .

[22]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[23]  Srinivas Aluru Handbook of Computational Molecular Biology (Chapman & All/Crc Computer and Information Science Series) , 2005 .

[24]  Eugene Berezikov,et al.  Approaches to microRNA discovery , 2006, Nature Genetics.

[25]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[26]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[27]  Brendan J. Frey,et al.  Detecting MicroRNA Targets by Linking Sequence, MicroRNA and Gene Expression Data , 2006, RECOMB.

[28]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[29]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[30]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[31]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[32]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[33]  T. Tammela,et al.  MicroRNA expression profiling in prostate cancer. , 2007, Cancer research.

[34]  Y. Akao,et al.  MicroRNA-143 and -145 in colon cancer. , 2007, DNA and cell biology.

[35]  Byoung-Tak Zhang,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm045 Data and text mining Discovery of microRNA–mRNA modules via population-based probabilistic learning , 2007 .

[36]  K. Chaudhuri,et al.  MicroRNA detection and target prediction: integration of computational and experimental approaches. , 2007, DNA and cell biology.

[37]  G. Hannon,et al.  A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. , 2007, Genes & development.

[38]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[39]  Anton J. Enright,et al.  Prediction of microRNA targets. , 2007, Drug discovery today.

[40]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[41]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[42]  Jason H. Moore,et al.  Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. , 2007, Cancer research.

[43]  Tu Bao Ho,et al.  Finding microRNA regulatory modules in human genome using rule induction , 2008, BMC Bioinformatics.

[44]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[45]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[46]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[47]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[48]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[49]  W. L. Ruzzo,et al.  MicroRNA Discovery and Profiling in Human Embryonic Stem Cells by Deep Sequencing of Small RNA Libraries , 2008, Stem cells.

[50]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[51]  Weixiong Zhang,et al.  MicroRNA prediction with a novel ranking algorithm based on random walks , 2008, ISMB.

[52]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[53]  Sanghyuk Lee,et al.  miRGator: an integrated system for functional annotation of microRNAs , 2007, Nucleic Acids Res..

[54]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[55]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[56]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[57]  Huan Yang,et al.  MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. , 2008, Cancer research.

[58]  Tao Jiang,et al.  MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement , 2010, BMC Bioinformatics.

[59]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[60]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[61]  Jonathan R. Clark,et al.  Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland , 2009, International journal of cancer.

[62]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[63]  W. Ritchie,et al.  Predicting microRNA targets and functions: traps for the unwary , 2009, Nature Methods.

[64]  Xinxia Peng,et al.  Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers , 2009, BMC Genomics.

[65]  Jiuyong Li,et al.  Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy , 2009, BMC Bioinformatics.

[66]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[67]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[68]  Li Li,et al.  Computational approaches for microRNA studies: a review , 2010, Mammalian Genome.

[69]  Je-Gun Joung,et al.  Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model , 2009, Bioinform..

[70]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[71]  Dennis Shasha,et al.  miRò: a miRNA knowledge base , 2009, Database J. Biol. Databases Curation.

[72]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[73]  C. Barbato,et al.  Computational Challenges in miRNA Target Predictions: To Be or Not to Be a True Target? , 2009, Journal of biomedicine & biotechnology.

[74]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[75]  Ana M. Aransay,et al.  miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments , 2009, Nucleic Acids Res..

[76]  Jiuyong Li,et al.  Discovery of functional miRNA-mRNA regulatory modules with computational methods , 2009, J. Biomed. Informatics.

[77]  A. Delacourte,et al.  MicroRNA regulation of Alzheimer's Amyloid precursor protein expression , 2009, Neurobiology of Disease.

[78]  Min Zhu,et al.  Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation , 2010, Bioinform..

[79]  Paul Bertone,et al.  Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. , 2010, RNA.

[80]  Juan Nunez-Iglesias,et al.  Joint Genome-Wide Profiling of miRNA and mRNA Expression in Alzheimer's Disease Cortex Reveals Altered miRNA Regulation , 2010, PloS one.

[81]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[82]  R. Shamir,et al.  Towards computational prediction of microRNA function and activity , 2010, Nucleic acids research.

[83]  M. Cairns,et al.  Schizophrenia is associated with an increase in cortical microRNA biogenesis , 2009, Molecular Psychiatry.

[84]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[85]  Srinivas Aluru,et al.  Handbook Of Computational Molecular Biology , 2010 .

[86]  Yong Huang,et al.  The discovery approaches and detection methods of microRNAs , 2011, Molecular Biology Reports.

[87]  Gabriele Sales,et al.  MAGIA, a web-based tool for miRNA and Genes Integrated Analysis , 2010, Nucleic Acids Res..

[88]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[89]  Y. van de Peer,et al.  Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules , 2010, PloS one.

[90]  Mathew B. Cox,et al.  MicroRNAs miR-17 and miR-20a Inhibit T Cell Activation Genes and Are Under-Expressed in MS Whole Blood , 2010, PloS one.

[91]  Hyeyoung Min,et al.  Got target?: computational methods for microRNA target prediction and their extension , 2010, Experimental & Molecular Medicine.

[92]  Bing Zhang,et al.  WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit , 2010, BMC Bioinformatics.

[93]  Debmalya Barh,et al.  miReg: a resource for microRNA regulation , 2010, J. Integr. Bioinform..

[94]  Florian Buettner,et al.  The sufficient minimal set of miRNA seed types , 2011, Bioinform..

[95]  Jie Li,et al.  Regulatory coordination of clustered microRNAs based on microRNA-transcription factor regulatory network , 2011, BMC Systems Biology.

[96]  Leming Shi,et al.  Comparing next-generation sequencing and microarray technologies in a toxicological study of the effects of aristolochic acid on rat kidneys. , 2011, Chemical research in toxicology.

[97]  R. Küffner,et al.  MIRTFnet: Analysis of miRNA Regulated Transcription Factors , 2011, PloS one.

[98]  E. Schadt,et al.  Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques , 2011, Molecular systems biology.

[99]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[100]  Juan Liu,et al.  A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules , 2011, Bioinform..

[101]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[102]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[103]  S. Chi,et al.  An alternative mode of microRNA target recognition , 2012, Nature Structural &Molecular Biology.

[104]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[105]  Semih Ekimler,et al.  Computational Methods for MicroRNA Target Prediction , 2014, Genes.