A Harmony Search-Based Differential Evolution Method

The Differential Evolution (DE) and Harmony Search (HS) are two well-known nature-inspired computing techniques. Both of them can be applied to effectively cope with nonlinear optimization problems. In this paper, we propose and study a new DE method, DE-HS, by utilizing the fresh individual generation mechanism of the HS. The HS-based approach can enhance the local search capability of the original DE method. Optimization of several benchmark functions and a real-world wind generator demonstrate that our DE-HS has an improved convergence property.

[1]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Algorithms , 2007 .

[2]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[3]  Xiaolei Wang,et al.  UNI-MODAL AND MULTI-MODAL OPTIMIZATION USING MODIFIED HARMONY SEARCH METHODS , 2009 .

[4]  Antero Arkkio,et al.  A New Harmony Search method in optimal wind generator design , 2010, The XIX International Conference on Electrical Machines - ICEM 2010.

[5]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[6]  Valéria Hrabovcová,et al.  Design of Rotating Electrical Machines , 2009 .

[7]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[8]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[9]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[10]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[11]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[12]  Xiao Zhi Gao,et al.  Fusion of clonal selection algorithm and harmony search method in optimisation of fuzzy classification systems , 2009, Int. J. Bio Inspired Comput..

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[14]  Xiao Zhi Gao,et al.  Fusion of clonal selection algorithm and differential evolution method in training cascade-correlation neural network , 2009, Neurocomputing.

[15]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[16]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[17]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[18]  Z. Dong,et al.  A Modified Differential Evolution Algorithm With Fitness Sharing for Power System Planning , 2008, IEEE Transactions on Power Systems.

[19]  G. Stumberger,et al.  Parameter Identification of the Jiles–Atherton Hysteresis Model Using Differential Evolution , 2008, IEEE Transactions on Magnetics.