Timing Parameter Characterization of Real-Time Systems

We investigate the problem of characterizing the solution spaces for timed automata augmented by unknown timing parameters (called timing parameter automata (TPA)). The main contribution of this paper is that we identify three non-trivial subclasses of TPAs, namely, upper-bound, lower-bound and bipartite TPAs, and analyze how hard it is to characterize the solution space. As it turns out, we are able to give complexity bounds for the sizes of the minimal (resp., maximal) elements which completely characterize the upward-closed (resp., downward-closed) solution spaces of upper-bound (resp., lower-bound) TPAs. For bipartite TPAs, it is shown that their solution spaces are not semilinear in general. We also extend our analysis to TPAs equipped with counters without zero-test capabilities.

[1]  Pao-Ann Hsiung,et al.  Parametric Analysis of Computer Systems , 1997, AMAST.

[2]  Farn Wang Parametric Timing Analysis for Real-Time Systems , 1996, Inf. Comput..

[3]  E. Allen Emerson,et al.  Parametric quantitative temporal reasoning , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[4]  Charles Rackoff,et al.  The Covering and Boundedness Problems for Vector Addition Systems , 1978, Theor. Comput. Sci..

[5]  Farn Wang,et al.  Parametric Optimization of Open Real-Time Systems , 2001, SAS.

[6]  Rüdiger Valk,et al.  The residue of vector sets with applications to decidability problems in Petri nets , 2004, Acta Informatica.

[7]  Farn Wang,et al.  Parametric Analysis of Computer Systems , 1997, Formal Methods Syst. Des..

[8]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[9]  Hsu-Chun Yen,et al.  A Multiparameter Analysis of the Boundedness Problem for Vector Addition Systems , 1985, J. Comput. Syst. Sci..

[10]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[11]  Rajeev Alur,et al.  Parametric Temporal Logic for "Model Measuring" , 1999, ICALP.

[12]  John E. Hopcroft,et al.  On the Reachability Problem for 5-Dimensional Vector Addition Systems , 1976, Theor. Comput. Sci..

[13]  Béatrice Bérard,et al.  Untiming Timed Languages , 1995, Inf. Process. Lett..

[14]  Thomas A. Henzinger,et al.  Parametric real-time reasoning , 1993, STOC.

[15]  Giorgio Delzanno,et al.  Symbolic Representation of Upward-Closed Sets , 2000, TACAS.

[16]  Frits W. Vaandrager,et al.  Linear parametric model checking of timed automata , 2002, J. Log. Algebraic Methods Program..

[17]  Sampath Kannan,et al.  Communicating Hierarchical State Machines , 1999, ICALP.