Revealing distinct corrosion mechanisms of soluble as-extruded Mg-Er-Ni alloy with LPSO and Mg2Ni phase in different orientations

[1]  Jinxing Wang,et al.  Rapid corrosion rates and high mechanical properties of as-extruded Mg-Er-Ni alloys by introducing LPSO and γʹ phases , 2023, Journal of Materials Research and Technology.

[2]  R. Wu,et al.  Corrosion mechanism of Mg alloys involving elongated long-period stacking ordered phase and intragranular lamellar structure , 2023, Journal of Materials Science & Technology.

[3]  Jing-feng Wang,et al.  Corrosion resistance of a superhydrophobic calcium carbonate coating on magnesium alloy by ultrasonic cavitation-assisted chemical conversion , 2022, Corrosion Science.

[4]  Jinxing Wang,et al.  The effect of solute segregated stacking faults on the corrosion behavior of Mg-Gd-Cu alloys , 2022, Corrosion Science.

[5]  R. Wu,et al.  Developing new Mg alloy as potential bone repair material via constructing weak anode nano-lamellar structure , 2022, Journal of Magnesium and Alloys.

[6]  Jinxing Wang,et al.  Achieving high strength and rapid degradation in Mg-Gd-Ni alloys by regulating LPSO phase morphology combined with extrusion , 2022, Journal of Magnesium and Alloys.

[7]  Yanlong Ma,et al.  Enhanced degradation properties of Mg-Gd-Ni alloys by regulating LPSO morphology , 2022, Journal of Physics and Chemistry of Solids.

[8]  Dingfei Zhang,et al.  Microstructures, mechanical properties and degradability of Mg-2Gd-0.5(Cu/Ni) alloys: A comparison study , 2022, Journal of Materials Science & Technology.

[9]  A. Atrens,et al.  Influence of crystallographic orientation and Al alloying on the corrosion behaviour of extruded α-Mg/LPSO two-phase Mg-Zn-Y alloys with multimodal microstructure , 2022, Corrosion Science.

[10]  C. Dai,et al.  Enhanced degradation properties of Mg-Y-Ni alloys by tailoring the LPSO morphology for fracturing tools applications , 2021, Materials Characterization.

[11]  Jinxing Wang,et al.  Formation of an abnormal texture in Mg-Gd-Y-Zn-Mn alloy and its effect on mechanical properties by altering extrusion parameters , 2021, Materials Science and Engineering: A.

[12]  Dingfei Zhang,et al.  Modified Microstructures and Corrosion Behaviors of Mg-Gd-Cu Alloys through Annealing Treatment , 2021, Journal of The Electrochemical Society.

[13]  Huijun Kang,et al.  The role of Ga in the microstructure, corrosion behavior and mechanical properties of as-extruded Mg–5Sn–xGa alloys , 2021 .

[14]  F. Pan,et al.  Effect of Ni on the microstructure, mechanical properties and corrosion behavior of MgGd1Nix alloys for fracturing ball applications , 2021 .

[15]  Yu Chen,et al.  Research on deformation mechanism of AZ31 magnesium alloy sheet with non-basal texture during uniaxial tension at room temperature: A visco-plastic self-consistent analysis , 2021 .

[16]  F. Pan,et al.  Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys , 2020 .

[17]  B. Guo,et al.  Mechanism of high-strength and ductility of Mg-RE alloy fabricated by low-temperature extrusion and aging treatment , 2020 .

[18]  Liang Li,et al.  Improving the corrosion resistance of MgZn1.2Gd Zr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions , 2020, Corrosion Science.

[19]  M. Dargusch,et al.  What activates the Mg surface—A comparison of Mg dissolution mechanisms , 2020 .

[20]  C.L. Yang,et al.  Effect of trace Ni addition on microstructure, mechanical and corrosion properties of the extruded Mg–Gd–Y–Zr–Ni alloys for dissoluble fracturing tools , 2020 .

[21]  K. Nie,et al.  Degradation behavior of Mg-4Zn-2Ni alloy with high strength and high degradation rate , 2020 .

[22]  Hua-nan Liu,et al.  Microstructure characterization and corrosion behavior of Mg–Y–Zn alloys with different long period stacking ordered structures , 2020 .

[23]  C. Peng,et al.  Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt.%) , 2020 .

[24]  Hua-nan Liu,et al.  Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multi-pass ECAP Process , 2020, Acta Metallurgica Sinica (English Letters).

[25]  Chenggang Yu,et al.  Review of Key Technical Principles of Multi-stage Segmented Fracturing Sleeve , 2020, Journal of Physics: Conference Series.

[26]  Yun-lai Deng,et al.  Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2Zr alloy , 2020 .

[27]  F. Pan,et al.  Enhanced mechanical properties and degradation rate of Mg–Ni–Y alloy by introducing LPSO phase for degradable fracturing ball applications , 2020 .

[28]  Hanxiang Wang,et al.  A new type of automatic ball injector for multistage fracturing , 2019 .

[29]  Ke Yang,et al.  Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys , 2019, Journal of Materials Science & Technology.

[30]  Yavuz Sun,et al.  Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg–4Zn–1La magnesium alloy , 2018, Rare Metals.

[31]  Junjie Gao,et al.  Effect of Sn element on the formation of LPSO phase and mechanical properties of Mg-6Y-2Zn alloy , 2018 .

[32]  E. Han,et al.  Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy , 2017 .

[33]  K. Deng,et al.  Effect of extrusion on corrosion properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) alloys , 2017 .

[34]  Andrej Atrens,et al.  Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets , 2017 .

[35]  S. Cabeza,et al.  Influence of long period stacking ordered phase arrangements on the corrosion behaviour of extruded Mg97Y2Zn1 alloy , 2016 .

[36]  X. Du,et al.  A high-performance Mg-Er-Zn-Zr alloy with low Er/Zn mass ratio , 2015 .

[37]  S. Omanovic,et al.  An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The effect of electrolyte renewal , 2015 .

[38]  S. Omanovic,et al.  An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time , 2014 .

[39]  John R. Scully,et al.  Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study , 2014 .

[40]  E. Han,et al.  Microstructure and protection characteristics of the naturally formed oxide films on Mg-xZn alloys , 2013 .

[41]  W. Ding,et al.  Effect of Zn/Gd Ratio on Phase Constitutions in Mg‐Zn‐Gd Alloys , 2011 .

[42]  H. Fraser,et al.  Grain character influences on corrosion of ECAPed pure magnesium , 2010 .

[43]  Jian-qing Zhang,et al.  Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour , 2010 .

[44]  E. Han,et al.  AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution , 2007 .

[45]  C. Hsu,et al.  Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance , 2001 .

[46]  John N. Hryn,et al.  Magnesium Technology 2001: Hryn/Magnesium , 2001 .

[47]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[48]  Tianshu Li,et al.  High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls , 2021 .