HTN planning: Overview, comparison, and beyond

Hierarchies are one of the most common structures used to understand and conceptualise the world. Within the field of Artificial Intelligence (AI) planning, which deals with the automation of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch that represents and handles hierarchies. In particular, the requirement for rich domain knowledge to characterise the world enables HTN planning to be very useful, and also to perform well. However, the history of almost 40 years obfuscates the current understanding of HTN planning in terms of accomplishments, planning models, similarities and differences among hierarchical planners, and its current and objective image. On top of these issues, the ability of hierarchical planning to truly cope with the requirements of real-world applications has been often questioned. As a remedy, we propose a framework-based approach where we first provide a basis for defining different formal models of hierarchical planning, and define two models that comprise a large portion of HTN planners. Second, we provide a set of concepts that helps in interpreting HTN planners from the aspect of their search space. Then, we analyse and compare the planners based on a variety of properties organised in five segments, namely domain authoring, expressiveness, competence, computation and applicability. Furthermore, we select Web service composition as a real-world and current application, and classify and compare the approaches that employ HTN planning to solve the problem of service composition. Finally, we conclude with our findings and present directions for future work. In summary, we provide a novel and comprehensive viewpoint on a core AI planning technique.

[1]  Bijan Parsia,et al.  Planning for Semantic Web Services , 2004, SWS@ISWC.

[2]  Dana S. Nau,et al.  Semantics for hierarchical task-network planning , 1994 .

[3]  Fahiem Bacchus,et al.  The AIPS '00 Planning Competition , 2001, AI Mag..

[4]  Juan Fernández-Olivares,et al.  From business process models to hierarchical task network planning domains , 2013, The Knowledge Engineering Review.

[5]  John Levine,et al.  Generation of Multiple Qualitatively Different Plan Options , 1998, AIPS.

[6]  Nate Blaylock,et al.  Generating Artificial Corpora for Plan Recognition , 2005, User Modeling.

[7]  Austin Tate,et al.  O-Plan: The open Planning Architecture , 1991, Artif. Intell..

[8]  Austin Tate,et al.  O-Plan: a Common Lisp Planning Web Service , 2003 .

[9]  David E. Wilkins,et al.  Can AI planners solve practical problems? , 1990, Comput. Intell..

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Susanne Biundo-Stephan,et al.  Improving Hierarchical Planning Performance by the Use of Landmarks , 2012, AAAI.

[12]  Jennifer Golbeck,et al.  Semantic Web Service Composition in Social Environments , 2009, International Semantic Web Conference.

[13]  James A. Hendler,et al.  UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning , 1994, AIPS.

[14]  Jesus Boticario,et al.  samap: An user-oriented adaptive system for planning tourist visits , 2008, Expert Syst. Appl..

[15]  Alfonso Gerevini,et al.  Preferences and soft constraints in PDDL3 , 2006 .

[16]  Sheila A. McIlraith,et al.  Web Service Composition Via Generic Procedures and Customizing User Preferences , 2006, SEMWEB.

[17]  Austin Tate,et al.  O-Plan2: an Open Architecture for Command, Planning and Control , 2006 .

[18]  John Mark Agosta Constraining Influence Diagram Structure by Generative Planning: An Application to the Optimization of Oil Spill Response , 1996, UAI.

[19]  Salim Khan,et al.  A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery , 2003, ICAPS.

[20]  Austin Tate,et al.  The Use of Condition Types to Restrict Search in an AI Planner , 1994, AAAI.

[21]  Kutluhan Erol,et al.  Hierarchical task network planning: formalization, analysis, and implementation , 1996 .

[22]  Fahiem Bacchus,et al.  AIPS 2000 Planning Competition: The Fifth International Conference on Artificial Intelligence Planning and Scheduling Systems , 2001 .

[23]  Hector Muñoz-Avila,et al.  IMPACTing SHOP: Putting an AI Planner Into a Multi-Agent Environment , 2003, Annals of Mathematics and Artificial Intelligence.

[24]  Marie desJardins,et al.  Coordinating a Distributed Planning System , 1999, AI Mag..

[25]  Steve Chien,et al.  Hierarchical task network and operator-based planning: two complementary approaches to real-world planning , 2001 .

[26]  Juan A. Cózar,et al.  Automating Oncology Therapy Plans by means of Temporal Hierarchical Task Networks Planning , 2008 .

[27]  Marco Aiello,et al.  Concept mapping for faster QoS-aware web service composition , 2010, 2010 IEEE International Conference on Service-Oriented Computing and Applications (SOCA).

[28]  Bernhard Nebel,et al.  Continual planning and acting in dynamic multiagent environments , 2006, PCAR '06.

[29]  Susanne Biundo-Stephan,et al.  Landmarks in Hierarchical Planning , 2010, ECAI.

[30]  Juan Fernández-Olivares,et al.  Temporal Enhancements of an HTN Planner , 2005, CAEPIA.

[31]  Marco Pistore,et al.  A Request Language for Web-Services Based on Planning and Constraint Satisfaction , 2002, TES.

[32]  Dana S. Nau,et al.  A hierarchical goal-based formalism and algorithm for single-agent planning , 2012, AAMAS.

[33]  James A. Hendler,et al.  Template-based Composition of Semantic Web Services , 2005, AAAI Fall Symposium: Agents and the Semantic Web.

[34]  Mike P. Papazoglou,et al.  Introduction: Service-oriented computing , 2003, CACM.

[35]  Dana S. Nau,et al.  Current Trends in Automated Planning , 2007, AI Mag..

[36]  Sheila A. McIlraith,et al.  Preference-Based Web Service Composition: A Middle Ground between Execution and Search , 2010, SEMWEB.

[37]  Incheon Paik,et al.  Automatic Web Services Composition Using Combining HTN and CSP , 2007, 7th IEEE International Conference on Computer and Information Technology (CIT 2007).

[38]  Marco Aiello,et al.  Combining Activity Recognition and AI Planning for Energy-Saving Offices , 2013, 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing.

[39]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[40]  Pascal Bercher,et al.  On the Decidability of HTN Planning with Task Insertion , 2011, IJCAI.

[41]  Ugur Kuter,et al.  A goal- and dependency-directed algorithm for learning hierarchical task networks , 2009, K-CAP '09.

[42]  Reid G. Simmons,et al.  Risk-Sensitive Planning with Probabilistic Decision Graphs , 1994, KR.

[43]  Seok-Won Lee,et al.  A goal-driven approach for adaptive service composition using planning , 2013, Math. Comput. Model..

[44]  Rachid Alami,et al.  Task planning and control for a multi-UAV system: architecture and algorithms , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  John Levine,et al.  O-Plan: A Web-Based AI Planning Agent , 2000, AAAI/IAAI.

[46]  Marco Aiello,et al.  Associating assertions with business processes and monitoring their execution , 2004, ICSOC '04.

[47]  Shuyun. Lu DSHOP: Distributed simple hierarchical ordered planner. , 2004 .

[48]  Deborah L. McGuinness,et al.  Bringing Semantics to Web Services with OWL-S , 2007, World Wide Web.

[49]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[50]  Stephen V. Chenoweth On the NP-ardness of blocks world , 1991 .

[51]  Dana S. Nau,et al.  Control Strategies in HTN Planning: Theory Versus Practice , 1998, AAAI/IAAI.

[52]  Daniel S. Weld An Introduction to Least Commitment Planning , 1994, AI Mag..

[53]  Mark Stefik,et al.  Planning with Constraints (MOLGEN: Part 1) , 1981, Artif. Intell..

[54]  Paolo Traverso,et al.  The actor's view of automated planning and acting: A position paper , 2014, Artif. Intell..

[55]  Marco Aiello,et al.  Domain-independent planning for services in uncertain and dynamic environments , 2016, Artif. Intell..

[56]  Shirin Sohrabi,et al.  Customizing the Composition of Web Services and Beyond , 2012 .

[57]  James A. Hendler,et al.  Automating DAML-S Web Services Composition Using SHOP2 , 2003, SEMWEB.

[58]  Marco Aiello,et al.  An Overview of Hierarchical Task Network Planning , 2014, ArXiv.

[59]  Austin Tate Planning and Doing Things , 2007 .

[60]  Ivan Bratko,et al.  Prolog (3rd ed.): programming for artificial intelligence , 2000 .

[61]  Héctor Muñoz-Avila,et al.  SHOP and M-SHOP: Planning with Ordered Task Decomposition , 2000 .

[62]  Richard Arthur,et al.  Tachyon: A constraint-based temporal reasoning model and its implementation , 1993, SGAR.

[63]  Dana S. Nau,et al.  HTN Problem Spaces: Structure, Algorithms, Termination , 2012, SOCS.

[64]  Austin Tate,et al.  Repairing Plans On-the-fly , 1997 .

[65]  Paul Levi,et al.  A deliberation layer for instantiating robot execution plans from abstract task descriptions , 2013, ICAPS 2013.

[66]  Therani Madhusudan,et al.  A declarative approach to composing web services in dynamic environments , 2006, Decis. Support Syst..

[67]  Austin Tate,et al.  O-Plan: a Knowledge-Based Planner and its Application to Logistics , 1996 .

[68]  J.F.A.K. van Benthem The Logic of Time. A Model-Theoretic Investigation into the Varieties of Temporal Antology and Temporal Discourse; 2nd rev. ed. edition , 1987 .

[69]  David E. Wilkins,et al.  Interactive Execution Monitoring of Agent Teams , 2003, J. Artif. Intell. Res..

[70]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[71]  Hector Muñoz-Avila,et al.  SHOP: Simple Hierarchical Ordered Planner , 1999, IJCAI.

[72]  Jeffrey M. Bradshaw,et al.  Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Workflow Composition and Enactment , 2004, SEMWEB.

[73]  Hector Muñoz-Avila,et al.  HTN-MAKER: Learning HTNs with Minimal Additional Knowledge Engineering Required , 2008, AAAI.

[74]  Liu Zhong,et al.  Messy Genetic Algorithm for Optimum Solution Search of HTN Planning , 2013 .

[75]  Hector Muñoz-Avila,et al.  Learning hierarchical task network domains from partially observed plan traces , 2014, Artif. Intell..

[76]  Nate Blaylock,et al.  Hierarchical Instantiated Goal Recognition , 2006 .

[77]  Sheila A. McIlraith,et al.  On Planning with Preferences in HTN , 2009, ArXiv.

[78]  Austin Tate,et al.  O Plan an Open Architecture for Command Planning and Control , 2006 .

[79]  Dana Nau,et al.  Integrating electrical and mechanical design and process planning , 1997 .

[80]  Edmund H. Durfee,et al.  A Survey of Research in Distributed, Continual Planning , 1999, AI Mag..

[81]  Subbarao Kambhampati,et al.  Learning Probabilistic Hierarchical Task Networks as Probabilistic Context-Free Grammars to Capture User Preferences , 2014, TIST.

[82]  D. Christie,et al.  The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse , 1985 .

[83]  Daniel D. Corkill,et al.  Hierarchical Planning in a Distributed Environment , 1979, IJCAI.

[84]  Francesco Mondada,et al.  Planner9, a HTN Planner Distributed on Groups of Miniature Mobile Robots , 2009, ICIRA.

[85]  Henry A. Kautz,et al.  Constraints and AI planning , 2005, IEEE Intelligent Systems.

[86]  James A. Hendler,et al.  HTN planning for Web Service composition using SHOP2 , 2004, J. Web Semant..

[87]  Dana S. Nau,et al.  Timeline: An HTN Planner that can Reason about Time , 2002, AIPS Workshop on Planning for Temporal Domains.

[88]  Subbarao Kambhampati,et al.  A comparative analysis of partial order planning and task reduction planning , 1995, SGAR.

[89]  Marco Aiello,et al.  Coordinating the web of services for a smart home , 2013, TWEB.

[90]  Young-Guk Ha,et al.  Towards a Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework , 2005 .

[91]  Hector Muñoz-Avila,et al.  Applications of SHOP and SHOP2 , 2005, IEEE Intelligent Systems.

[92]  James A. Hendler,et al.  Analyzing External Conditions to Improve the Efficiency of HTN Planning , 1998, AAAI/IAAI.

[93]  James A. Hendler,et al.  Complexity results for HTN planning , 1994, Annals of Mathematics and Artificial Intelligence.

[94]  John Levine,et al.  Using AI Planning Technology for Army Small Unit Operations , 2000, AIPS.

[95]  Manuel Roveri,et al.  What planner for ambient intelligence applications? , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[96]  Sam Ruby,et al.  RESTful Web Services , 2007 .

[97]  Jerry R. Hobbs,et al.  DAML-S: Web Service Description for the Semantic Web , 2002, SEMWEB.

[98]  David E. Wilkins,et al.  Practical planning - extending the classical AI planning paradigm , 1989, Morgan Kaufmann series in representation and reasoning.

[99]  Robert P. Goldman,et al.  Durative Planning in HTNs , 2006, ICAPS.

[100]  Pavol Návrat,et al.  Expressivity of STRIPS-Like and HTN-Like Planning , 2007, KES-AMSTA.

[101]  David W. Aha,et al.  CaMeL: Learning Method Preconditions for HTN Planning , 2002, AIPS.

[102]  Laura Sebastia,et al.  On the extraction, ordering, and usage of landmarks in planning , 2001 .

[103]  James A. Hendler,et al.  UM Translog: a planning domain for the development and benchmarking of planning systems , 1995 .

[104]  David E. Wilkins,et al.  Applying an AI Planner to Military Operations Planning , 1993 .

[105]  Karen L. Myers Planning with Conflicting Advice , 2000, AIPS.

[106]  Thomas J. Lee,et al.  THE AIR CAMPAIGN PLANNING KNOWLEDGE BASE , 1999 .

[107]  Alexander Lazovik,et al.  Utility-Based HTN Planning , 2014, ECAI.

[108]  Pascal Bercher,et al.  Landmark-Aware Strategies for Hierarchical Planning , 2011 .

[109]  Antonio González Muñoz,et al.  SIADEX: An interactive knowledge-based planner for decision support in forest fire fighting , 2005, AI Commun..

[110]  James A. Hendler,et al.  Commitment Strategies in Hierarchical Task Network Planning , 1996, AAAI/IAAI, Vol. 1.

[111]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[112]  Marco Aiello,et al.  Task Interaction in an HTN Planner , 2011, ArXiv.

[113]  D. Nau,et al.  Hierarchical Goal Networks and Goal-Driven Autonomy: Going where AI Planning Meets Goal Reasoning , 2013 .

[114]  Karen L. Myers Strategic Advice for Hierarchical Planners , 1996, KR.

[115]  Eva Onaindia,et al.  Automatic generation of temporal planning domains for e-learning problems , 2010, J. Sched..

[116]  Schahram Dustdar,et al.  A survey on web services composition , 2005, Int. J. Web Grid Serv..

[117]  Sheila A. McIlraith,et al.  Optimizing Web Service Composition While Enforcing Regulations , 2009, SEMWEB.

[118]  Juan Fernández-Olivares,et al.  A Middle-Ware for the Automated Composition and Invocation of Semantic Web Services Based on Temporal HTN Planning Techniques , 2007, CAEPIA.

[119]  Pat Langley,et al.  Learning hierarchical task networks by observation , 2006, ICML.

[120]  Kurt Geihs,et al.  The Web Service Challenge - A review on Semantic Web Service Composition , 2009, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[121]  Juan Fernández-Olivares,et al.  Context-Aware Generation and Adaptive Execution of Daily Living Care Pathways , 2012, IWAAL.

[122]  Weiming Zhang,et al.  Messy Genetic Algorithm for the Optimum Solution Search of the HTN Planning , 2011 .

[123]  Earl David Sacerdoti,et al.  A Structure for Plans and Behavior , 1977 .

[124]  Jorge A. Baier,et al.  HTN Planning with Preferences , 2009, IJCAI.

[125]  Juan Fernández-Olivares,et al.  Efficiently Handling Temporal Knowledge in an HTN Planner , 2006, ICAPS.

[126]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[127]  Juan Fernández-Olivares,et al.  An Approach for Representing and Managing Medical Exceptions in Care Pathways Based on Temporal Hierarchical Planning Techniques , 2012, ProHealth/KR4HC.

[128]  Juan Fernández-Olivares,et al.  ATHENA: Smart Process Management for Daily Activity Planning for Cognitive Impairment , 2011, IWAAL.

[129]  Austin Tate,et al.  A retrospective on the "Planning: A Joint AI/OR Approach" Project , 2004 .

[130]  Jianwei Zhang,et al.  HTN robot planning in partially observable dynamic environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[131]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[132]  Athman Bouguettaya,et al.  A multilevel composability model for semantic Web services , 2005, IEEE Transactions on Knowledge and Data Engineering.

[133]  Matthias Klusch,et al.  Semantic Web Service Composition Planning with OWLS-Xplan , 2005, AAAI Fall Symposium: Agents and the Semantic Web.

[134]  David W. Aha,et al.  HICAP: An Interactive Case-Based Planning Architecture and its Application to Noncombatant Evacuation Operations , 1999, AAAI/IAAI.

[135]  Qiang Yang,et al.  A Theory of Conflict Resolution in Planning , 1992, Artif. Intell..

[136]  David E. Wilkins,et al.  A Call for Knowledge-Based Planning , 2001, AI Mag..

[137]  David W. Aha,et al.  LEARNING PRECONDITIONS FOR PLANNING FROM PLAN TRACES AND HTN STRUCTURE , 2005, Comput. Intell..

[138]  Stephen V. Chenoweth On the NP-Hardness of Blocks World , 1991, AAAI.

[139]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[140]  Johan van Benthem,et al.  Visualizing Compositions of Services from Large Repositories , 2008, 2008 10th IEEE Conference on E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services.

[141]  Marco Aiello,et al.  Optimal QoS-Aware Web Service Composition , 2009, 2009 IEEE Conference on Commerce and Enterprise Computing.

[142]  A. Tate Key Concepts in the O-Plan2 Knowledge Based Plan Representation , 2007 .

[143]  Andreas Wombacher,et al.  WSC-06: The Web Service Challenge , 2006, The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE'06).

[144]  Pat Langley Relevance and insight in experimental studies , 1996 .

[145]  John Kingston,et al.  CommonKADS Models for Knowledge-Based Planning , 1996, AAAI/IAAI, Vol. 1.

[146]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[147]  James A. Hendler,et al.  HTN Planning: Complexity and Expressivity , 1994, AAAI.

[148]  Adi Botea,et al.  Offline Planning with Hierarchical Task Networks in Video Games , 2007, AIIDE.

[149]  Kalyan Moy Gupta,et al.  Knowledge-Based Project Planning , 2002 .

[150]  Bernd Schattenberg,et al.  Hybrid Planning and Scheduling , 2015, KI - Künstliche Intelligenz.

[151]  Ian Horrocks,et al.  From SHIQ and RDF to OWL: the making of a Web Ontology Language , 2003, J. Web Semant..

[152]  Qiang Yang,et al.  Theory and Algorithms for Plan Merging , 1992, Artif. Intell..

[153]  Hector Muñoz-Avila,et al.  Learning Hierarchical Task Networks for Nondeterministic Planning Domains , 2009, IJCAI.

[154]  James A. Hendler,et al.  Information Gathering During Planning for Web Service Composition , 2004, SEMWEB.

[155]  L. Ye [The extraction]. , 1974, Ars curandi em odontologia.

[156]  Austin Tate,et al.  Generating Project Networks , 1977, IJCAI.

[157]  Marco Aiello,et al.  Extended Goals for Composing Services , 2009, ICAPS.

[158]  Ingo Br,et al.  Prolog programming for artificial intelligence , 1990 .

[159]  Evren Sirin,et al.  Web Service Composition with User Preferences , 2008, ESWC.

[160]  Marco Aiello,et al.  Continual Planning with Sensing for Web Service Composition , 2011, AAAI.