Compressed kd-tree\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {k}\mathsf {^d}\text {-tree}$$\end{document} f

Temporal graphs represent vertices and binary relations that change along time. The work in this paper proposes to represent temporal graphs as cells in a 4D binary matrix: two dimensions to represent extreme vertices of an edge and two dimensions to represent the temporal interval when the edge exists. This strategy generalizes the idea of the adjacency matrix for storing static graphs. The proposed structure called Compressed $$\text {k}\mathsf {^d}\text {-tree}$$kd-tree ($$\text {ck}\mathsf {^d}\text {-tree}$$ckd-tree) is capable of dealing with unclustered data with a good use of space. The $$\text {ck}\mathsf {^d}\text {-tree}$$ckd-tree uses asymptotically the same space than the (worst case) lower bound for storing cells in a 4D binary matrix, without considering any regularity. Techniques that group leaves into buckets and compress nodes with few children show to improve the performance in time and space. An experimental evaluation compares the $$\text {ck}\mathsf {^d}\text {-tree}$$ckd-tree with $$\text {k}\mathsf {^d}\text {-tree}$$kd-tree (the d-dimensional extension of the $$\text {k}\mathsf {^2}\text {-tree}$$k2-tree) and with other up-to-date compressed data structures based on inverted indexes and $$\mathsf {Wavelet}\text { Tree}$$WaveletTrees, showing the potential use of the $$\text {ck}\mathsf {^d}\text {-tree}$$ckd-tree for different types of temporal graphs.

[1]  Udayan Khurana,et al.  Efficient snapshot retrieval over historical graph data , 2012, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[2]  Kunihiko Sadakane,et al.  New text indexing functionalities of the compressed suffix arrays , 2003, J. Algorithms.

[3]  B. Roca,et al.  New data structures and algorithms for the efficient management of large spatial datasets , 2014 .

[4]  Roberto Grossi,et al.  High-order entropy-compressed text indexes , 2003, SODA '03.

[5]  Afonso Ferreira,et al.  Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks , 2003, Int. J. Found. Comput. Sci..

[6]  Alberto Apostolico,et al.  Graph Compression by BFS , 2009, Algorithms.

[7]  Makoto Nagao,et al.  A file organization for geographic information systems based on spatial proximity , 1983, Comput. Vis. Graph. Image Process..

[8]  Nieves R. Brisaboa,et al.  Compact Querieable Representations of Raster Data , 2013, SPIRE.

[9]  Nieves R. Brisaboa,et al.  A Compressed Suffix-Array Strategy for Temporal-Graph Indexing , 2014, SPIRE.

[10]  Guy Jacobson,et al.  Space-efficient static trees and graphs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[11]  Rasmus Pagh Low Redundancy in Static Dictionaries with O(1) Worst Case Lookup Time , 1999, ICALP.

[12]  Gonzalo Navarro,et al.  DACs: Bringing direct access to variable-length codes , 2013, Inf. Process. Manag..

[13]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[14]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[15]  Benoît Hudson,et al.  Succinct Representation of Well-Spaced Point Clouds , 2009, ArXiv.

[16]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[17]  Alistair Moffat,et al.  From Theory to Practice: Plug and Play with Succinct Data Structures , 2013, SEA.

[18]  Nieves R. Brisaboa,et al.  Compact Data Structures for Temporal Graphs , 2013, 2013 Data Compression Conference.

[19]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[20]  Cecilia Mascolo,et al.  Graph Metrics for Temporal Networks , 2013, ArXiv.

[21]  Gonzalo Navarro,et al.  k2-Trees for Compact Web Graph Representation , 2009, SPIRE.

[22]  Kenneth L. Clarkson,et al.  Fast algorithms for the all nearest neighbors problem , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[23]  Torsten Suel,et al.  Performance of compressed inverted list caching in search engines , 2008, WWW.

[24]  Nieves R. Brisaboa,et al.  Interleaved K2-Tree: Indexing and Navigating Ternary Relations , 2014, 2014 Data Compression Conference.

[25]  Max Crochemore,et al.  Algorithms and Theory of Computation Handbook , 2010 .

[26]  Gonzalo Navarro,et al.  Practical Rank/Select Queries over Arbitrary Sequences , 2008, SPIRE.

[27]  Gonzalo Navarro,et al.  Compressed Dynamic Binary Relations , 2012, 2012 Data Compression Conference.

[28]  Gonzalo Navarro,et al.  Compact representation of Web graphs with extended functionality , 2014, Inf. Syst..

[29]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[30]  J. Ian Munro,et al.  Membership in Constant Time and Almost-Minimum Space , 1999, SIAM J. Comput..

[31]  Nieves R. Brisaboa,et al.  Data structures for temporal graphs based on compact sequence representations , 2015, Inf. Syst..

[32]  Marcin Zukowski,et al.  Super-Scalar RAM-CPU Cache Compression , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[33]  Rajeev Raman,et al.  Succinct indexable dictionaries with applications to encoding k-ary trees and multisets , 2002, SODA '02.

[34]  Reynold Cheng,et al.  On querying historical evolving graph sequences , 2011, Proc. VLDB Endow..

[35]  David Eppstein,et al.  The skip quadtree: a simple dynamic data structure for multidimensional data , 2005, SCG.

[36]  Sandra Álvarez García Compact and efficient representations of graphs , 2014 .

[37]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[38]  Rajeev Raman,et al.  Representing Trees of Higher Degree , 2005, Algorithmica.

[39]  Gonzalo Navarro,et al.  Word-based self-indexes for natural language text , 2012, TOIS.

[40]  Alan G. Labouseur,et al.  The G* graph database: efficiently managing large distributed dynamic graphs , 2015, Distributed and Parallel Databases.

[41]  Laurent Viennot,et al.  A Note on Models, Algorithms, and Data Structures for Dynamic Communication Networks , 2002 .

[42]  Nieves R. Brisaboa,et al.  Compressed k2-Triples for Full-In-Memory RDF Engines , 2011, AMCIS.

[43]  Srinivas Aluru,et al.  Dynamic Compressed Hypertoctrees with Application to the N-Body Problem , 1999, FSTTCS.