Eubacterial sigma-factors.

The initiation of transcription is the most important step for gene regulation in eubacteria. To initiate transcription, RNA polymerase has to associate with a small protein, known as a sigma-factor. The sigma-factor directs RNA polymerase to a specific class of promoter sequences. Most bacterial species synthesize several different sigma-factors that recognize different consensus sequences. This variety in sigma-factors provides bacteria with the opportunity to maintain basal gene expression as well as for regulation of gene expression in response to altered environmental or developmental signals. This review focuses on the function, regulation and distribution of the 14 different classes of sigma-factors that are presently known.

[1]  R. Burgess,et al.  Cyclic Re-use of the RNA Polymerase Sigma Factor , 1969, Nature.

[2]  R. Burgess,et al.  Factor Stimulating Transcription by RNA Polymerase , 1969, Nature.

[3]  R. Perry,et al.  Regulation of ribosome synthesis. , 1972, The Biochemical journal.

[4]  F. Ausubel Regulation of nitrogen fixation genes , 1984, Cell.

[5]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[6]  J. Hirschman,et al.  Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. McClure,et al.  Mechanism and control of transcription initiation in prokaryotes. , 1985, Annual review of biochemistry.

[8]  R. Haselkorn,et al.  Characterization of nif regulatory genes in Rhodopseudomonas capsulata using lac gene fusions. , 1985, Gene.

[9]  W. Haldenwang,et al.  Bacillus subtilis sigma factor sigma 29 is the product of the sporulation-essential gene spoIIG. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Mandelstam,et al.  Duplicated sporulation genes in bacteria , 1985 .

[11]  D. T. Jones,et al.  Physiological responses of Bacteroides and Clostridium strains to environmental stress factors. , 1986, Advances in microbial physiology.

[12]  G. Ray,et al.  Isolation of Bacillus subtilis genes transcribed in vitro and in vivo by a major sporulation-induced, DNA-dependent RNA polymerase , 1986, Journal of bacteriology.

[13]  A. Sonenshein,et al.  Transcriptional control of the Bacillus subtilis spoIID gene , 1986, Journal of bacteriology.

[14]  M. Rosenberg,et al.  Constitutive function of a positively regulated promoter reveals new sequences essential for activity. , 1987, The Journal of biological chemistry.

[15]  W. Haldenwang,et al.  Sporulation-specific sigma factor sigma 29 of Bacillus subtilis is synthesized from a precursor protein, P31. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Wartell,et al.  Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters. , 1987, Nucleic acids research.

[17]  C. Harley,et al.  Analysis of E. coli promoter sequences. , 1987, Nucleic acids research.

[18]  M. Chamberlin,et al.  Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene , 1988, Journal of bacteriology.

[19]  C. Moran,et al.  rpoD operon promoter used by sigma H-RNA polymerase in Bacillus subtilis , 1988, Journal of bacteriology.

[20]  R. Losick,et al.  The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression , 1988, Journal of bacteriology.

[21]  M. Chamberlin,et al.  Structure and function of bacterial sigma factors. , 1988, Annual review of biochemistry.

[22]  P. Stragier,et al.  Processing of a sporulation sigma factor in Bacillus subtilis: How morphological structure could control gene expression , 1988, Cell.

[23]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[24]  P. Stragier,et al.  Tandem genes encoding sigma-factors for consecutive steps of development in Bacillus subtilis. , 1989, Genes & development.

[25]  P. Stragier,et al.  Identification of a new sigma-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. , 1989, Genes & development.

[26]  M. Susskind,et al.  A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. , 1989, Journal of molecular biology.

[27]  W. Nicholson,et al.  Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters , 1989, Journal of bacteriology.

[28]  Mark J. Buttner,et al.  The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility σ factor of B. subtilis , 1989, Cell.

[29]  P. Loewen,et al.  Nucleotide sequence of katF of Escherichia coli suggests KatF protein is a novel sigma transcription factor. , 1989, Nucleic acids research.

[30]  R. Losick,et al.  Mutation changing the specificity of an RNA polymerase sigma factor. , 1989, Journal of molecular biology.

[31]  C. Gross,et al.  Interaction of Escherichia coli RNA polymerase holoenzyme containing sigma 32 with heat shock promoters. DNase I footprinting and methylation protection. , 1989, Journal of molecular biology.

[32]  S. Kustu,et al.  Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. , 1989, Microbiological reviews.

[33]  R. Losick,et al.  Chromosomal rearrangement generating a composite gene for a developmental transcription factor. , 1989, Science.

[34]  P. Piggot,et al.  Timing of spoII gene expression relative to septum formation during sporulation of Bacillus subtilis , 1989, Journal of bacteriology.

[35]  James C. Hu,et al.  Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. , 1989, Journal of molecular biology.

[36]  P. Youngman,et al.  Genetic evidence that RNA polymerase associated with sigma A factor uses a sporulation-specific promoter in Bacillus subtilis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Waldburger,et al.  Changes in conserved region 2 of Escherichia coli σ70 affecting promoter recognition , 1990 .

[38]  L. Kroos,et al.  Processing of the mother-cell sigma factor, sigma K, may depend on events occurring in the forespore during Bacillus subtilis development. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Losick,et al.  Cascade regulation of spore coat gene expression in Bacillus subtilis. , 1990, Journal of molecular biology.

[40]  S. Sasse-Dwight,et al.  Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ 54 , 1990, Cell.

[41]  S. Inouye,et al.  Development-specific sigma-factor essential for late-stage differentiation of Myxococcus xanthus. , 1990, Genes & development.

[42]  J. Hoch,et al.  The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Losick,et al.  Two amino acids in an RNA polymerase sigma factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[44]  P. Rather,et al.  Negative regulator of sigma G-controlled gene expression in stationary-phase Bacillus subtilis , 1990, Journal of bacteriology.

[45]  M. Bibb,et al.  Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2) , 1990, Journal of bacteriology.

[46]  C. Moran,et al.  Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis , 1991, Journal of bacteriology.

[47]  I. Smith,et al.  Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor , 1991, Journal of bacteriology.

[48]  J. Helmann Alternative sigma factors and the regulation of flagellar gene expression , 1991, Molecular microbiology.

[49]  R. Losick,et al.  Establishment of cell type by compartmentalized activation of a transcription factor. , 1991, Science.

[50]  I. Kullik,et al.  Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN) , 1991, Journal of bacteriology.

[51]  C. Waldburger,et al.  Hierarchies of base pair preferences in the P22 ant promoter , 1991, Journal of bacteriology.

[52]  J. J. Wu,et al.  Transcription of the Bacillus subtilis spoIIA locus. , 1991, Gene.

[53]  C. Moran,et al.  Genetic evidence for interaction of sigma A with two promoters in Bacillus subtilis , 1991, Journal of bacteriology.

[54]  D. Sun,et al.  Effect of chromosome location of Bacillus subtilis forespore genes on their spo gene dependence and transcription by E sigma F: identification of features of good E sigma F-dependent promoters , 1991, Journal of bacteriology.

[55]  C. G. Lewis,et al.  Construction and characterization of Streptomyces coelicolor A3(2) mutants that are multiply deficient in the nonessential hrd-encoded RNA polymerase sigma factors , 1992, Journal of bacteriology.

[56]  S. Satola,et al.  Binding of Spo0A stimulates spoIIG promoter activity in Bacillus subtilis , 1992, Journal of bacteriology.

[57]  Martin Buck,et al.  Specific binding of the transcription factor sigma-54 to promoter DNA , 1992, Nature.

[58]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[59]  R M Macnab,et al.  Genetics and biogenesis of bacterial flagella. , 1992, Annual review of genetics.

[60]  P. Stragier,et al.  Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. , 1992, Journal of molecular biology.

[61]  M. W. Woude,et al.  Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap , 1992, Molecular microbiology.

[62]  R. Losick,et al.  Crisscross regulation of cell-type-specific gene expression during development in B. subtilis , 1992, Nature.

[63]  I. Smith,et al.  Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H , 1992, Journal of bacteriology.

[64]  R. Losick,et al.  6 Bacterial Sigma Factors , 1992 .

[65]  L. Shapiro,et al.  A temporally controlled sigma-factor is required for polar morphogenesis and normal cell division in Caulobacter. , 1992, Genes & development.

[66]  R. Losick,et al.  Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis , 1992, Journal of bacteriology.

[67]  M. Farkašovský,et al.  Four genes in Streptomyces aureofaciens containing a domain characteristic of principal sigma factors. , 1992, Gene.

[68]  R. Haselkorn,et al.  Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes , 1992, Journal of bacteriology.

[69]  Cloning and DNA sequence of sigB gene of Stigmatella aurantiaca. , 1992, Nucleic acids research.

[70]  C. Gross,et al.  How a mutation in the gene encoding sigma 70 suppresses the defective heat shock response caused by a mutation in the gene encoding sigma 32 , 1992, Journal of bacteriology.

[71]  R. Losick,et al.  Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. , 1992, Journal of molecular biology.

[72]  C. Gross,et al.  Polypeptides containing highly conserved regions of transcription initiation factor σ 70 exhibit specificity of binding to promoter DNA , 1992, Cell.

[73]  C. Price,et al.  The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division , 1993, Molecular microbiology.

[74]  K. Chater,et al.  Genetics of differentiation in Streptomyces. , 1993, Annual review of microbiology.

[75]  H. Mori,et al.  Regulation of the heat-shock response in bacteria. , 1993, Annual review of microbiology.

[76]  N. Thompson,et al.  In vitro functional characterization of overproduced Escherichia coli katF/rpoS gene product. , 1993, Biochemistry.

[77]  D. Martin,et al.  Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor , 1993, Journal of bacteriology.

[78]  H. Liesegang,et al.  Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34 , 1993, Journal of bacteriology.

[79]  A. Kumar,et al.  The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter. , 1993, Journal of molecular biology.

[80]  M. Cashel,et al.  Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp , 1993, Journal of bacteriology.

[81]  Akira Ishihama,et al.  Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Errington,et al.  σ F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-σ factor that is also a protein kinase , 1993, Cell.

[83]  M. Merrick,et al.  In a class of its own — the RNA polymerase sigma factor σ;54 (σN) , 1993 .

[84]  M. Farkašovský,et al.  Differential expression of principal sigma factor homologues of Streptomyces aureofaciens correlates with the developmental stage. , 1993, Nucleic acids research.

[85]  D. Hodgson,et al.  Light‐induced carotenogenesis in Myxococcus xanthus: DNA sequence analysis of the carR region , 1993, Molecular microbiology.

[86]  S. Inouye,et al.  A new putative sigma factor of Myxococcus xanthus , 1993, Journal of bacteriology.

[87]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. , 1993, Microbiological reviews.

[88]  The role of the sigma subunit in promoter recognition by RNA polymerase. , 1993, Cellular & molecular biology research.

[89]  K. Chater,et al.  Functional and evolutionary implications of a survey of various actinomycetes for homologues of two Streptomyces coelicolor sporulation genes. , 1993, Journal of general microbiology.

[90]  A. Grossman,et al.  Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. , 1993, Genes & development.

[91]  J. Errington,et al.  Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. , 1993, Journal of molecular biology.

[92]  R. Kolter,et al.  Sensing starvation: a homoserine lactone--dependent signaling pathway in Escherichia coli. , 1994, Science.

[93]  R. Hengge-aronis,et al.  The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. , 1994, Genes & development.

[94]  T. Sato,et al.  Expression of the Bacillus subtilis spoIVCA gene, which encodes a site-specific recombinase, depends on the spoIIGB product , 1994, Journal of bacteriology.

[95]  A. Hochschild,et al.  Amino acid substitutions in the -35 recognition motif of sigma 70 that result in defects in phage lambda repressor-stimulated transcription , 1994, Journal of bacteriology.

[96]  U. Sauer,et al.  Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum , 1994, Journal of bacteriology.

[97]  D. Martin,et al.  Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response , 1994, Journal of bacteriology.

[98]  M. Buck,et al.  DNA distortion and nucleation of local DNA unwinding within sigma-54 (sigma N) holoenzyme closed promoter complexes. , 1994, The Journal of biological chemistry.

[99]  H. Buc,et al.  Modulated expression of promoters containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H‐NS , 1994, Molecular microbiology.

[100]  R. Hengge-aronis,et al.  The role of the sigma factor sigma S (KatF) in bacterial global regulation. , 1994, Annual review of microbiology.

[101]  K. Makino,et al.  Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. , 1994, Journal of molecular biology.

[102]  S. Engelmann,et al.  Analysis of the induction of general stress proteins of Bacillus subtilis. , 1994, Microbiology.

[103]  M. Susskind,et al.  Target of the transcriptional activation function of phage lambda cI protein. , 1994, Science.

[104]  S. Heu,et al.  Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes , 1994, Journal of bacteriology.

[105]  A Böck,et al.  Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli. , 1994, The Journal of biological chemistry.

[106]  M. Buck,et al.  Identification of a DNA‐contacting surface in the transcription factor sigma‐54 , 1994, Molecular microbiology.

[107]  K. Rudd,et al.  Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[108]  K. Rudd,et al.  rpoE, the gene encoding the second heat‐shock sigma factor, sigma E, in Escherichia coli. , 1995, The EMBO journal.

[109]  W. Haldenwang The sigma factors of Bacillus subtilis , 1995, Microbiological reviews.

[110]  J. Helmann,et al.  The Bacillus subtilis flagellar regulatory protein sigma D: overproduction, domain analysis and DNA-binding properties. , 1995, Journal of molecular biology.

[111]  V. Braun,et al.  Transcriptional regulation of ferric citrate transport in Escherichia coli K‐12. Fecl belongs to a new subfamily of σ70‐type factors that respond to extracytoplasmic stimuli , 1995, Molecular microbiology.

[112]  D. Court,et al.  Novel Proteins of the Phosphotransferase System Encoded within the rpoN Operon of Escherichia coli , 1995, The Journal of Biological Chemistry.

[113]  Sequence-specific interactions between promoter DNA and the RNA polymerase sigma factor E. , 1995, Journal of molecular biology.

[114]  K. Nakahigashi,et al.  Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. , 1995, Nucleic acids research.

[115]  J. Foster,et al.  The stationary‐phase sigma factor σS (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium , 1995, Molecular microbiology.

[116]  G. Cornelis,et al.  The fliA gene encoding sigma 28 in Yersinia enterocolitica , 1995, Journal of bacteriology.

[117]  A. Grossman Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. , 1995, Annual review of genetics.

[118]  J. D. Helmann,et al.  Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA , 1995, Nucleic Acids Res..

[119]  S. Darst,et al.  Three-dimensional structure of E. coil core RNA polymerase: Promoter binding and elongation conformations of the enzyme , 1995, Cell.

[120]  V. de Lorenzo,et al.  The sigma 54-dependent promoter Ps of the TOL plasmid of Pseudomonas putida requires HU for transcriptional activation in vivo by XylR , 1995, Journal of bacteriology.

[121]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[122]  I. Smith,et al.  Characterization of RNA polymerse and two sigma‐factor genes from Mycobacterium smegmatis , 1995, Molecular microbiology.

[123]  H. Mori,et al.  Escherichia coli FtsH is a membrane‐bound, ATP‐dependent protease which degrades the heat‐shock transcription factor sigma 32. , 1995, The EMBO journal.

[124]  U. Sauer,et al.  Sigma factor and sporulation genes in Clostridium. , 1995, FEMS microbiology reviews.

[125]  R. Hengge-aronis,et al.  Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli , 1995, Journal of bacteriology.

[126]  R. Hengge-aronis,et al.  UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli , 1995, Journal of bacteriology.

[127]  C. Price,et al.  Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals , 1995, Journal of bacteriology.

[128]  A. Ishihama,et al.  Promoter determinants for Escherichia coli RNA polymerase holoenzyme containing sigma 38 (the rpoS gene product). , 1995, Nucleic acids research.

[129]  K. Hughes,et al.  The role of anti‐sigma factors in gene regulation , 1995, Molecular microbiology.

[130]  K. Makino,et al.  The rpoE gene of Escherichia coli, which encodes sigma E, is essential for bacterial growth at high temperature , 1995, Journal of bacteriology.

[131]  R. Walker,et al.  Determination of transforming growth factor beta1 mRNA expression in breast carcinomas by in situ hybridization , 1995, The Journal of pathology.

[132]  D. Bartlett,et al.  An rpoE‐like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep‐sea bacterium Photobacterium sp. strain SS9 , 1995, Molecular microbiology.

[133]  R. Hengge-aronis,et al.  Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli , 1995, Journal of bacteriology.

[134]  C. Georgopoulos,et al.  The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. , 1995, The EMBO journal.

[135]  E. Ron,et al.  The dnaKJ operon of Agrobacterium tumefaciens: transcriptional analysis and evidence for a new heat shock promoter , 1995, Journal of bacteriology.

[136]  M. Lonetto,et al.  A new RNA polymerase sigma factor, σF is required for the late stages of morphological differentiation in Streptomyces spp. , 1995, Molecular microbiology.

[137]  Carl Wu,et al.  Heat shock transcription factors: structure and regulation. , 1995, Annual review of cell and developmental biology.

[138]  M. Voskuil,et al.  The — 16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli , 1995, Molecular microbiology.

[139]  P. Glaser,et al.  Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[140]  S. Golden,et al.  Circadian clocks in prokaryotes , 1996, Molecular microbiology.

[141]  M. Hecker,et al.  Heat‐shock and general stress response in Bacillus subtilis , 1996, Molecular microbiology.

[142]  A. Tomasz,et al.  Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing , 1996, Journal of bacteriology.

[143]  Killary,et al.  Production of Microcell Hybrids , 1996, Methods.

[144]  R. Losick,et al.  Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. , 1996, Journal of molecular biology.

[145]  M. Pátek,et al.  Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. , 1996, Microbiology.

[146]  C. Chamizo,et al.  A consensus structure for σs‐dependent promoters , 1996, Molecular microbiology.

[147]  E. Takano,et al.  redD and actII-ORF4, pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2), are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD , 1996, Journal of bacteriology.

[148]  M. Merrick,et al.  The RpoN‐box motif of the RNA polymerase sigma factor σN plays a role in promoter recognition , 1996, Molecular microbiology.

[149]  J. Foster,et al.  Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium , 1996, Journal of bacteriology.

[150]  Jeffrey W. Roberts,et al.  Function of E. coli RNA Polymerase σ Factor- σ70 in Promoter-Proximal Pausing , 1996, Cell.

[151]  R. Hengge-aronis,et al.  Back to log phase: σS as a global regulator in the osmotic control of gene expression in Escherichia coli , 1996, Molecular microbiology.

[152]  A. Chakrabarty,et al.  Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA , 1996, Journal of bacteriology.

[153]  C. Gross,et al.  The sigma subunit of Escherichia coli RNA polymerase senses promoter spacing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[154]  K. Tanaka,et al.  A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. , 1996, The EMBO journal.

[155]  Y. Nakamura,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[156]  LIGHT-INDUCED CAROTENOGENESIS IN MYXOCOCCUS XANTHUS : LIGHT-DEPENDENT MEMBRANE SEQUESTRATION OF ECF SIGMA FACTOR CARQ BY ANTI-SIGMA FACTOR CARR , 1996 .

[157]  K. Chater,et al.  The positions of the sigma‐factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2) , 1996, Molecular microbiology.

[158]  W. Bishai,et al.  A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[159]  S. Darst,et al.  Crystal Structure of a σ70 Subunit Fragment from E. coli RNA Polymerase , 1996, Cell.

[160]  A. Galizzi,et al.  Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis , 1996, Journal of bacteriology.

[161]  V. Ramakrishnan,et al.  Sequences in the -35 region of Escherichia coli rpoS-dependent genes promote transcription by E sigma S , 1996, Journal of bacteriology.

[162]  C. Dorman,et al.  Flexible response: DNA supercoiling, transcription and bacterial adaptation to environmental stress. , 1996, Trends in microbiology.

[163]  M. Cashel,et al.  The stringent response , 1996 .

[164]  V. Shingler Signal sensing by σ54‐dependent regulators: derepression as a control mechanism , 1996, Molecular microbiology.

[165]  R. Hengge-aronis,et al.  The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. , 1996, Genes & development.

[166]  R. Macnab,et al.  Flagella and motility , 1996 .

[167]  H. Bujard,et al.  A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. , 1996, The EMBO journal.

[168]  A. Matin Role of alternate sigma factors in starvation protein synthesis--novel mechanisms of catabolite repression. , 1996, Research in microbiology.

[169]  J. Fassler,et al.  Promoters and basal transcription machinery in eubacteria and eukaryotes: concepts, definitions, and analogies. , 1996, Methods in enzymology.

[170]  R. Hengge-aronis,et al.  Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli , 1997, Journal of bacteriology.

[171]  J. Helmann,et al.  The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high temperature , 1997, Journal of bacteriology.

[172]  D. Kaiser,et al.  σ54, a vital protein for Myxococcus xanthus , 1997 .

[173]  J. Gralla,et al.  DNA-binding determinants of sigma 54 as deduced from libraries of mutations , 1997, Journal of bacteriology.

[174]  J. Wu,et al.  The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter , 1997, Journal of bacteriology.

[175]  A. Dombroski,et al.  Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase. , 1997, Journal of molecular biology.

[176]  L. Kroos,et al.  A feedback loop regulates the switch from one sigma factor to the next in the cascade controlling Bacillus subtilis mother cell gene expression , 1997, Journal of bacteriology.

[177]  C. Gross,et al.  The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. , 1997, Genes & development.

[178]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[179]  R. Husson,et al.  A mycobacterial extracytoplasmic function sigma factor involved in survival following stress , 1997, Journal of bacteriology.

[180]  B. Magasanik,et al.  DNA bending and the initiation of transcription at sigma54-dependent bacterial promoters. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[181]  T. Gruber,et al.  Expression of two alternative sigma factors of Synechococcus sp. strain PCC 7002 is modulated by carbon and nitrogen stress. , 1997, Microbiology.

[182]  C. Georgopoulos,et al.  Modulation of the Escherichia coliσE (RpoE) heat‐shock transcription‐factor activity by the RseA, RseB and RseC proteins , 1997, Molecular microbiology.

[183]  H. Hennecke,et al.  Three disparately regulated genes for σ32‐like transcription factors in Bradyrhizobium japonicum , 1997, Molecular microbiology.

[184]  T. Gruber,et al.  Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2 , 1997, Journal of bacteriology.

[185]  Akira Ishihama,et al.  Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2) , 1997, Nucleic Acids Res..

[186]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[187]  M. Buttner,et al.  Sigma‐E is required for the production of the antibiotic actinomycin in Streptomyces antibioticus , 1997, Molecular microbiology.

[188]  S. Busby,et al.  Region 2.5 of the Escherichia coli RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters , 1997, The EMBO journal.

[189]  B. Purnelle,et al.  Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. , 1997, Microbiology.

[190]  V. Braun,et al.  SigX of Bacillus subtilis replaces the ECF sigma factor FecI of Escherichia coli and is inhibited by RsiX , 1997, Molecular and General Genetics MGG.

[191]  A. Dombroski Recognition of the -10 promoter sequence by a partial polypeptide of sigma70 in vitro. , 1997, The Journal of biological chemistry.

[192]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[193]  C. Gross,et al.  The σE‐mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE , 1997, Molecular microbiology.

[194]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[195]  K. Chater,et al.  Developmental Regulation of Transcription ofwhiE, a Locus Specifying the Polyketide Spore Pigment in Streptomyces coelicolor A3(2) , 1998, Journal of bacteriology.

[196]  R. Burgess,et al.  Roles of DnaK and RpoS in Starvation-Induced Thermotolerance of Escherichia coli , 1998, Journal of bacteriology.

[197]  J. Michiels,et al.  The Rhizobium etli rpoN Locus: DNA Sequence Analysis and Phenotypical Characterization of rpoN,ptsN, and ptsA Mutants , 1998, Journal of bacteriology.

[198]  T. Gruber,et al.  Characterization of the alternative σ-factors SigD and SigE in Synechococcus sp. strain PCC 7002. SigE is implicated in transcription of post-exponential-phase-specific genes , 1998, Archives of Microbiology.

[199]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .