Fluorescence measurements of free Ca2+ concentration in human erythrocytes using the Ca2+-indicator fura-2.

[1]  D. Morris,et al.  The internal viscosity of the human erythrocyte may determine its lifespan in vivo. , 2009, Scandinavian journal of haematology.

[2]  J. Meldolesi,et al.  Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells , 1987, The Journal of cell biology.

[3]  D. Williams,et al.  A Ca2+-insensitive form of fura-2 associated with polymorphonuclear leukocytes. Assessment and accurate Ca2+ measurement. , 1987, The Journal of biological chemistry.

[4]  W. Lederer,et al.  Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. , 1987, Science.

[5]  R. London,et al.  Nuclear magnetic resonance measurement of cytosolic free calcium levels in human red blood cells. , 1986, The American journal of physiology.

[6]  M. Devynck,et al.  Increased platelet cytosolic free calcium concentration in essential hypertension. , 1986, Journal of hypertension.

[7]  R. Tsien,et al.  Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. , 1986, Science.

[8]  S. Highsmith,et al.  Sarcoplasmic reticulum interacts with the Ca(2+) indicator precursor fura-2-am. , 1986, Biochemical and biophysical research communications.

[9]  J. Cheung,et al.  Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. , 1986, The American journal of physiology.

[10]  E. Satoyoshi,et al.  Ca content of human erythrocytes. What is the true value? , 1986, Cell calcium.

[11]  V. Marchesi,et al.  A calmodulin and α-subunit binding domain in human erythrocyte spectrin , 1986 .

[12]  V. Zappia,et al.  Enzymatic basis for the calcium-induced decrease of membrane protein methyl esterification in intact erythrocytes. Evidence for an impairment of S-adenosylmethionine synthesis. , 1986, European journal of biochemistry.

[13]  A. Herrmann,et al.  Correlation of the internal microviscosity of human erythrocytes to the cell volume and the viscosity of hemoglobin solutions. , 1986, Biochimica et biophysica acta.

[14]  C. Ashley,et al.  Na+/Ca2+ exchange in isolated smooth muscle cells de monstrated by the fluorescent calcium indicator fura‐2 , 1986, FEBS letters.

[15]  Roger Y. Tsien,et al.  Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2 , 1985, Nature.

[16]  Roger Y. Tsien,et al.  Changes of free calcium levels with stages of the cell division cycle , 1985, Nature.

[17]  E. Neher,et al.  The Ca signal from fura‐2 loaded mast cells depends strongly on the method of dye‐loading , 1985, FEBS letters.

[18]  C. Craescu,et al.  Compartmentalization of Ca2+ in sickle cells. , 1985, Cell calcium.

[19]  D. Dearborn,et al.  Erythrocyte cytosolic free Ca2+ and plasma membrane Ca2+-ATPase activity in cystic fibrosis. , 1985, Cell calcium.

[20]  N. Maeda,et al.  Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes. , 1985, Biochimica et biophysica acta.

[21]  R Y Tsien,et al.  Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. , 1985, Cell calcium.

[22]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[23]  R. Tsien,et al.  Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. , 1985, The Journal of biological chemistry.

[24]  J. García-Sancho Pyruvate prevents the ATP depletion caused by formaldehyde or calcium-chelator esters in the human red cell. , 1985, Biochimica et biophysica acta.

[25]  S. Schrier,et al.  Impaired erythrocyte calcium homeostasis in beta-thalassemia. , 1984, Blood.

[26]  H. Rasmussen,et al.  Calcium messenger system: an integrated view. , 1984, Physiological reviews.

[27]  T. Tiffert,et al.  Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. , 1984, Biochimica et biophysica acta.

[28]  R. Tsien,et al.  Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator , 1982, Nature.

[29]  S. Schrier,et al.  Calcium distribution within human erythrocytes , 1980 .

[30]  V. Lew,et al.  Magnesium buffering in intact human red blood cells measured using the ionophore A23187. , 1980, The Journal of physiology.

[31]  J. Wiley,et al.  Passive permeability of human red blood cells to calcium. , 1986, The American journal of physiology.

[32]  E. Carafoli Calcium-transporting systems of plasma membranes, with special attention to their regulation. , 1984, Advances in cyclic nucleotide and protein phosphorylation research.

[33]  J. Parker,et al.  Physiologically instructive genetic variants involving the human red cell membrane. , 1983, Physiological reviews.

[34]  A. Ringbom Complexation in analytical chemistry , 1963 .