Monolithic integration of continuously tunable plasmonic nanostructures.

We demonstrate precise three-dimensional integration of smooth bumps, grooves, and apertures in optically thick metal films using template stripping. Patterned silicon wafers are used as high-quality, reusable templates. The heights or depths of the metallic features are controlled to within 2 nm, giving continuously tunable optical properties with sharp and intense plasmonic resonances. Furthermore, we demonstrate a pick-and-place template stripping method in situ, enabling versatile three-dimensional micromanipulation, imaging, and characterization of nanoscale devices.

[1]  K. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[2]  G. Whitesides,et al.  Influence of defects on the electrical characteristics of mercury-drop junctions: self-assembled monolayers of n-alkanethiolates on rough and smooth silver. , 2007, Journal of the American Chemical Society.

[3]  Thomas W. Ebbesen,et al.  Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture , 1999 .

[4]  Y. Fainman,et al.  High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. , 2006, Optics letters.

[5]  Masud Mansuripur,et al.  Plasmonic nano-structures for optical data storage , 2009 .

[6]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[7]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[8]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[9]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[10]  John A Rogers,et al.  Interfacial chemistries for nanoscale transfer printing. , 2002, Journal of the American Chemical Society.

[11]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[12]  Ewold Verhagen,et al.  Enhanced nonlinear optical effects with a tapered plasmonic waveguide. , 2007, Nano letters.

[13]  T. Ebbesen,et al.  Plasmonic photon sorters for spectral and polarimetric imaging , 2008 .

[14]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  Sang‐Hyun Oh,et al.  Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. , 2009, Lab on a chip.

[16]  Andrew M. Minor,et al.  Focused Ion Beam Microscopy and Micromachining , 2007 .

[17]  Harry A. Atwater The promise of plasmonics. , 2007 .

[18]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[21]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[22]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[23]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[24]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[25]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[26]  B. R. Johnson,et al.  All-optical nanoscale pH meter. , 2006, Nano letters.

[27]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[28]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[29]  A. Polman,et al.  Plasmonics Applied , 2008, Science.

[30]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[31]  Martin Hegner,et al.  Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy , 1993 .

[32]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[33]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[34]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[35]  L. Novotný,et al.  Antennas for light , 2011 .

[36]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[37]  Hyungsoon Im,et al.  Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors , 2007 .

[38]  Yujie J. Ding,et al.  "Rainbow" trapping and releasing at telecommunication wavelengths. , 2009, Physical review letters.

[39]  Sang-Hyun Oh,et al.  Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[40]  Tao Tao,et al.  Focused ion beam induced deposition of platinum , 1990 .