Algebraic area enumeration of random walks on the honeycomb lattice.
暂无分享,去创建一个
[1] 公庄 庸三. Discrete math = 離散数学 , 2004 .
[2] E. Condon. The Theory of Groups and Quantum Mechanics , 1932 .
[3] U Zeitler,et al. Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.
[4] The Colored Hofstadter Butterfly for the Honeycomb Lattice , 2014, 1403.1270.
[5] 46 , 2015, Slow Burn.
[6] S. Ouvry,et al. Exclusion statistics and lattice random walks , 2019, Nuclear Physics B.
[7] Philip Kim,et al. Observation of the fractional quantum Hall effect in graphene , 2009, Nature.
[8] Ming-Hsuan Kang. Toroidal fullerenes with the Cayley graph structures , 2009 .
[9] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[10] S. Ouvry,et al. The algebraic area of closed lattice random walks , 2018, Journal of Physics A: Mathematical and Theoretical.
[11] R. Seiler,et al. Models of the Hofstadter‐type , 1996 .
[12] S. Ouvry,et al. Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers , 2020, 2006.06445.
[13] R. Rammal. Landau level spectrum of Bloch electrons in a honeycomb lattice , 1985 .
[14] Ericka Stricklin-Parker,et al. Ann , 2005 .