A note on cement in asteroids

[1]  Daniela Fischer,et al.  Chondrules And The Protoplanetary Disk , 2016 .

[2]  T. Grav,et al.  The Complex History of Trojan Asteroids , 2015, 1506.01658.

[3]  M. Salvatore,et al.  The Second Conference on the Lunar Highlands Crust and New Directions. Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditions , 2014 .

[4]  V. Mohaček-Grošev,et al.  Do cement nanoparticles exist in space , 2014, 1404.7392.

[5]  A. Guilbert-Lepoutre Survival of water ice in Jupiter Trojans , 2013, 1401.5196.

[6]  T. Owen,et al.  Constraints on the Composition of Trojan Asteroid 624 Hektor , 2013 .

[7]  O. Witasse,et al.  Paucity of Tagish Lake-like parent bodies in the Asteroid Belt and among Jupiter Trojans , 2013 .

[8]  Paul Lucey,et al.  Are Large Trojan Asteroids Salty? An Observational, Theoretical, and Experimental Study , 2012, 1211.3099.

[9]  M. Köhler,et al.  Mid‐infrared spectroscopy of refractory inclusions (CAIs) in CV and CO chondrites , 2008 .

[10]  I. Richardson The calcium silicate hydrates , 2008 .

[11]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[12]  J. Yarwood,et al.  Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases , 2007 .

[13]  David Jewitt,et al.  Spectroscopic Search for Water Ice on Jovian Trojan Asteroids , 2006 .

[14]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[15]  E. Peeters,et al.  Spitzer Detections of New Dust Components in the Outflow of the Red Rectangle , 2005, astro-ph/0506473.

[16]  I. Hutcheon,et al.  Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions , 2005, Nature.

[17]  Edward R. D. Scott,et al.  Chondritic Meteorites and the High-Temperature Nebular Origins of Their Components , 2005 .

[18]  M. Martino,et al.  Spectroscopic observations of Jupiter Trojans , 2004 .

[19]  R. V. Morris,et al.  Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry , 2004 .

[20]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[21]  Atlanta,et al.  Crystalline silicate dust around evolved stars - II. The crystalline silicate complexes , 2002, astro-ph/0201304.

[22]  University College London,et al.  Crystalline silicate dust around evolved stars. I. The sample stars , 2002, astro-ph/0201303.

[23]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[24]  T. Mahoney,et al.  Disks, Planetesimals and Planets , 2000 .

[25]  S. Shaw,et al.  Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study , 2000 .

[26]  A. Tsuchiyama,et al.  The Optical Constant of Crystaline Spinel , 2000 .

[27]  M. Miyamoto,et al.  Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: implication for aqueous alteration in parent asteroids , 1998 .

[28]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[29]  H. Takeda,et al.  Wollastonite whiskers in the Allende meteorite and their bearing on a possible post-condensation process. , 1979 .

[30]  T. Shoji CaO-Al2O3-SiO2-H2O系の相関係;CaO-Al2O3-SiO2-H2O系の相関係;Phase relations in the System CaO-Al2O3-SiO2-H2O , 1974 .