A note on cement in asteroids
暂无分享,去创建一个
[1] Daniela Fischer,et al. Chondrules And The Protoplanetary Disk , 2016 .
[2] T. Grav,et al. The Complex History of Trojan Asteroids , 2015, 1506.01658.
[3] M. Salvatore,et al. The Second Conference on the Lunar Highlands Crust and New Directions. Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditions , 2014 .
[4] V. Mohaček-Grošev,et al. Do cement nanoparticles exist in space , 2014, 1404.7392.
[5] A. Guilbert-Lepoutre. Survival of water ice in Jupiter Trojans , 2013, 1401.5196.
[6] T. Owen,et al. Constraints on the Composition of Trojan Asteroid 624 Hektor , 2013 .
[7] O. Witasse,et al. Paucity of Tagish Lake-like parent bodies in the Asteroid Belt and among Jupiter Trojans , 2013 .
[8] Paul Lucey,et al. Are Large Trojan Asteroids Salty? An Observational, Theoretical, and Experimental Study , 2012, 1211.3099.
[9] M. Köhler,et al. Mid‐infrared spectroscopy of refractory inclusions (CAIs) in CV and CO chondrites , 2008 .
[10] I. Richardson. The calcium silicate hydrates , 2008 .
[11] Jeffrey J. Thomas,et al. Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.
[12] J. Yarwood,et al. Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases , 2007 .
[13] David Jewitt,et al. Spectroscopic Search for Water Ice on Jovian Trojan Asteroids , 2006 .
[14] Dale P. Cruikshank,et al. Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .
[15] E. Peeters,et al. Spitzer Detections of New Dust Components in the Outflow of the Red Rectangle , 2005, astro-ph/0506473.
[16] I. Hutcheon,et al. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions , 2005, Nature.
[17] Edward R. D. Scott,et al. Chondritic Meteorites and the High-Temperature Nebular Origins of Their Components , 2005 .
[18] M. Martino,et al. Spectroscopic observations of Jupiter Trojans , 2004 .
[19] R. V. Morris,et al. Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry , 2004 .
[20] Robert H. Brown,et al. Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .
[21] Atlanta,et al. Crystalline silicate dust around evolved stars - II. The crystalline silicate complexes , 2002, astro-ph/0201304.
[22] University College London,et al. Crystalline silicate dust around evolved stars. I. The sample stars , 2002, astro-ph/0201303.
[23] Michael E. Zolensky,et al. The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.
[24] T. Mahoney,et al. Disks, Planetesimals and Planets , 2000 .
[25] S. Shaw,et al. Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study , 2000 .
[26] A. Tsuchiyama,et al. The Optical Constant of Crystaline Spinel , 2000 .
[27] M. Miyamoto,et al. Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: implication for aqueous alteration in parent asteroids , 1998 .
[28] M. Zolensky,et al. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .
[29] H. Takeda,et al. Wollastonite whiskers in the Allende meteorite and their bearing on a possible post-condensation process. , 1979 .
[30] T. Shoji. CaO-Al2O3-SiO2-H2O系の相関係;CaO-Al2O3-SiO2-H2O系の相関係;Phase relations in the System CaO-Al2O3-SiO2-H2O , 1974 .