Chapter 10 – Undersea Amplified Lightwave Systems Design

[1]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[2]  Takamasa Imai,et al.  Over 10,000 km Straight Line Transmission System Experiment at 2.5 Gb / s Using In-Line Optical Amplifiers , 1992 .

[3]  C. R. Giles,et al.  Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers , 1991 .

[4]  N. S. Bergano,et al.  Bit-synchronous polarisation and phase modulation scheme for improving the performance of optical amplifier transmission systems , 1996 .

[5]  N. S. Bergano,et al.  Polarization scrambling improves SNR performance in a chain of EDFAs , 1994 .

[6]  J. Gordon,et al.  Phase noise in photonic communications systems using linear amplifiers. , 1990, Optics letters.

[7]  N. S. Bergano,et al.  Bit error rate measurements of 14000 km 5 Gbit/s fibre-amplifier transmission system using circulating loop , 1991 .

[8]  H. Haus,et al.  Soliton transmission control. , 1991, Optics letters.

[9]  Katsumi Iwatsuki,et al.  10 Gbit/s optical soliton transmission over 7200 km by using a monolithically integrated MQW-DFB-LD/MQW-EA modulator light source , 1994 .

[10]  W. A. Stallard,et al.  Demonstration of optical pulse propagation over 10000 km of fibre using recirculating loop , 1991 .

[11]  E. Lichtman Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems , 1995 .

[12]  R. Azzam,et al.  Polarized light in optics and spectroscopy , 1990 .

[13]  M. G. Taylor,et al.  Improvement in performance of long haul EDFA link using high frequency polarisation modulation , 1994 .

[14]  C. R. Giles,et al.  Transient gain and cross talk in erbium-doped fiber amplifiers. , 1989, Optics letters.

[15]  E. Lichtmann,et al.  Performance degradation due to polarisation dependent gain and loss in lightwave systems with optical amplifiers , 1993 .

[16]  P. Humblet,et al.  On the bit error rate of lightwave systems with optical amplifiers , 1991 .

[17]  E. Lichtman Optimal amplifier spacing in ultralong lightwave systems , 1993 .

[18]  Patrick R. Trischitta,et al.  A circulating loop experimental technique to simulate the jitter accumulation of a chain of fiber-optic regenerators , 1988, IEEE Trans. Commun..

[19]  O. Audouin,et al.  Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain , 1994, IEEE Photonics Technology Letters.

[20]  R. Ehrbar,et al.  Undersea cables for telephony , 1983, IEEE Communications Magazine.

[21]  D. Marcuse Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers , 1990 .

[22]  L. Mollenauer,et al.  Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. , 1988, Optics letters.

[23]  J. Gordon,et al.  Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission , 1991 .

[24]  Govind P. Agrawal,et al.  Group-velocity dispersion , 2019, Nonlinear Fiber Optics.

[25]  J. Thiennot,et al.  Optical undersea cable systems trends , 1993 .

[26]  N. S. Bergano,et al.  Margin measurements in optical amplifier system , 1993, IEEE Photonics Technology Letters.

[27]  N. Edagawa,et al.  Observation of BER degradation due to fading in long-distance optical amplifier system , 1993 .

[28]  John Lehrer Zyskind,et al.  40 Gb/s WDM Transmission of Eight 5 Gb/s Data Channels Over Transoceanic Distances using the Conventional NRZ Modulation Format , 1995 .

[29]  D. Marcuse,et al.  Effect of fiber nonlinearity on long-distance transmission , 1991 .

[30]  Neal S. Bergano,et al.  Polarization-scrambling-induced timing jitter in optical-amplifier systems , 1995 .

[31]  Tingye Li,et al.  The impact of optical amplifiers on long-distance lightwave telecommunications , 1993, Proc. IEEE.

[32]  D. G. Duff,et al.  Possibility For Upgrade Of The First Installed Optical Amplifier System , 1995 .

[33]  P. R. Trischitta,et al.  Global Undersea Communication Networks [Guest Editorial] , 1996 .

[34]  Shigeyuki Akiba,et al.  9000 km, 5 Gb/s NRZ Transmission Experiment Using 274 Erbium-Doped Fiber-Amplifiers , 1992 .

[35]  P. Runge,et al.  The SL Undersea Lightwave System , 1984, Journal of Lightwave Technology.

[36]  M.G. Taylor Observation of new polarization dependence effect in long haul optically amplified system , 1993, IEEE Photonics Technology Letters.

[37]  P. R. Trischitta,et al.  The TAT-12/13 Cable Network , 1996 .

[38]  Y. Fukada,et al.  BER fluctuation suppression in optical in-line amplifier systems using polarisation scrambling technique , 1994 .

[39]  Stuart M. Abbott,et al.  Design requirements for the current generation of undersea cable systems , 1995, AT&T Technical Journal.

[40]  J. Judkins,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[41]  J. Gordon,et al.  The sliding-frequency guiding filter: an improved form of soliton jitter control. , 1992, Optics letters.

[42]  D. J. Malyon,et al.  Error ratio measurements over transoceanic distances using recirculating loop , 1991 .

[43]  V. J. Mazurczyk Polarization Hole Burning in Erbium Doped Fiber Amplifiers. , 1993 .

[44]  A. Hasegawa,et al.  Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect. , 1992, Optics letters.

[45]  D. G. Duff,et al.  Effect of intersymbol interference on signal-to-noise measurements , 1995 .

[46]  M.G. Taylor,et al.  Improvement in Q with low frequency polarization modulation on transoceanic EDFA link , 1994, IEEE Photonics Technology Letters.

[47]  M Ikeda,et al.  Pulse circulation measurement of transmission characteristics in long optical fibers. , 1977, Applied optics.

[48]  N. S. Bergano,et al.  A 9000 km 5 Gb/s and 21,000 km 2.4 Gb/s Feasibility Demonstration of Transoceanic EDFA Systems Using a Circulating Loop , 1991 .

[49]  L. Mollenauer,et al.  Demonstration of error-free soliton transmission at 2.5 Gbit/s over more than 14000 km , 1991 .