Pólya’s Theorem on Random Walks via Pólya’s Urn
暂无分享,去创建一个
[1] Yuval Peres,et al. Recurrent Graphs where Two Independent Random Walks Collide Finitely Often , 2004 .
[2] A survey of random processes with reinforcement , 2007, math/0610076.
[3] L. Saloff‐Coste. RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .
[4] Elchanan Mossel,et al. Nearest-neighbor walks with low predictability profile and percolation in 2 + ε dimensions , 1998 .
[5] Robin Pemantle,et al. Unpredictable paths and percolation , 1998 .
[6] Peter G. Doyle,et al. Random Walks and Electric Networks: REFERENCES , 1987 .
[7] Hosam M. Mahmoud,et al. Polya Urn Models , 2008 .
[8] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[9] W. Woess. Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .
[10] D. A. Sprott. Urn Models and Their Application—An Approach to Modern Discrete Probability Theory , 1978 .
[11] G. Pólya,et al. Sur quelques points de la théorie des probabilités , 1930 .
[12] Norman L. Johnson,et al. Urn models and their application , 1977 .
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[15] Random walks in varying dimensions , 2004, math/0404085.
[16] Y. Peres,et al. Transience of percolation clusters on wedges , 2002, math/0206130.
[17] Terry Lyons. A Simple Criterion for Transience of a Reversible Markov Chain , 1983 .
[18] G. Pólya,et al. Über die Statistik verketteter Vorgänge , 1923 .
[19] Elizabeth L. Wilmer,et al. Markov Chains and Mixing Times , 2008 .
[20] C. Nash-Williams,et al. Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.