Mutant NPM 1 Maintains th e Leukemic State through HOX Expression Graphical Abstract Highlights

[1]  M. Minden,et al.  Abstract 2991: Cytoplasmic mislocalization of CTCF by NPM1c in acute myeloid leukemia resulting in inhibited CTCF regulatory functions generating aberrant genetic and epigenetic profiles , 2018, Molecular and Cellular Biology / Genetics.

[2]  M. Goodell,et al.  Highly Efficient Gene Disruption of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9 , 2018, Journal of visualized experiments : JoVE.

[3]  James E. Bradner,et al.  The dTAG system for immediate and target-specific protein degradation , 2018, Nature Chemical Biology.

[4]  C. Hofmeister,et al.  Safety and efficacy of selinexor in relapsed or refractory multiple myeloma and Waldenstrom macroglobulinemia. , 2018, Blood.

[5]  R. Andrews,et al.  Molecular synergy underlies the co-occurrence patterns and phenotype of NPM 1-mutant 1 acute myeloid leukemia . 2 3 , 2017 .

[6]  Nathanael S Gray,et al.  MELK is not necessary for the proliferation of basal-like breast cancer cells , 2017, eLife.

[7]  R. Garzon,et al.  A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. , 2017, Blood.

[8]  Eric S. Lander,et al.  Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras , 2017, Cell.

[9]  M. Minden,et al.  Biological and clinical consequences of NPM1 mutations in AML , 2017, Leukemia.

[10]  B. Falini,et al.  The Mechanism By Which Mutant Nucleophosmin (NPM1) Creates Leukemic Self-Renewal Is Readily Reversed , 2016 .

[11]  R. Carlson,et al.  First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients With Advanced Solid Tumors. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Margaret A Goodell,et al.  Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. , 2016, Cell reports.

[13]  R. Carlson,et al.  Phase IB Study of Selinexor, a First-in-Class Inhibitor of Nuclear Export, in Patients With Advanced Refractory Bone or Soft Tissue Sarcoma. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  Richard L. Halpert,et al.  Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer , 2016, Clinical Cancer Research.

[15]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[16]  Roland Eils,et al.  Active medulloblastoma enhancers reveal subgroup-specific cellular origins , 2016, Nature.

[17]  Yashma Patel,et al.  Assessment of Minimal Residual Disease in Standard-Risk AML. , 2016, The New England journal of medicine.

[18]  D. Grimwade,et al.  Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. , 2016, Blood.

[19]  K. Kawakami,et al.  Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes , 2016, eLife.

[20]  S. Armstrong,et al.  Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia. , 2016, Cancer discovery.

[21]  B. Falini,et al.  Perspectives for therapeutic targeting of gene mutations in acute myeloid leukaemia with normal cytogenetics , 2015, British journal of haematology.

[22]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[23]  Nathan C. Sheffield,et al.  ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors , 2015, Nature Methods.

[24]  B. Falini,et al.  Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. , 2015, Blood.

[25]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[26]  R. Fulton,et al.  Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells , 2015, Leukemia.

[27]  E. Baloglu,et al.  Nucleo-cytoplasmic transport as a therapeutic target of cancer , 2014, Journal of Hematology & Oncology.

[28]  Andrew L. Kung,et al.  NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. , 2014, Molecular cell.

[29]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[30]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[31]  James J Collins,et al.  Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. , 2013, Cell stem cell.

[32]  N. Bolli,et al.  The human NPM1 mutation A perturbs megakaryopoiesis in a conditional mouse model. , 2013, Blood.

[33]  G. Pruneri,et al.  NPMc+ and FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model , 2013, Leukemia.

[34]  O. Dovey,et al.  A powerful molecular synergy between mutant Nucleophosmin and Flt3-ITD drives acute myeloid leukemia in mice , 2013, Leukemia.

[35]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[36]  Guido Marcucci,et al.  Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. , 2012, Blood.

[37]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[38]  P. Aplan,et al.  NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. , 2011, Blood.

[39]  Hongwei Ma,et al.  Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. , 2011, Blood.

[40]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[41]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[42]  Stephen A. Ramsey,et al.  Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites , 2010, Bioinform..

[43]  Toshiki Watanabe,et al.  Detection of exon 12 type A mutation of NPM1 gene in IMS-M2 cell line. , 2010, Leukemia research.

[44]  S. Pileri,et al.  Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications , 2009, Leukemia.

[45]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[46]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[47]  N. Bolli,et al.  A western blot assay for detecting mutant nucleophosmin (NPM1) proteins in acute myeloid leukaemia , 2008, Leukemia.

[48]  Axel Benner,et al.  Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. , 2008, The New England journal of medicine.

[49]  S. Fröhling,et al.  FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. , 2007, Cancer cell.

[50]  R. Humphries,et al.  Hox genes in hematopoiesis and leukemogenesis , 2007, Oncogene.

[51]  Brunangelo Falini,et al.  Born to be exported: COOH-terminal nuclear export signals of different strength ensure cytoplasmic accumulation of nucleophosmin leukemic mutants. , 2007, Cancer research.

[52]  Brunangelo Falini,et al.  Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. , 2007, Blood.

[53]  Pier Paolo Pandolfi,et al.  Nucleophosmin and cancer , 2006, Nature Reviews Cancer.

[54]  W. Hiddemann,et al.  Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. , 2006, Blood.

[55]  G. Daley,et al.  Embryonic stem cell-derived hematopoietic stem cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  N. Bolli,et al.  Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin , 2005, Leukemia.

[57]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Pandolfi,et al.  Role of nucleophosmin in embryonic development and tumorigenesis , 2005, Nature.

[59]  Natalia Meani,et al.  Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. , 2005, Blood.

[60]  Paola Fazi,et al.  Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. , 2005, The New England journal of medicine.

[61]  Søren Brunak,et al.  Analysis and prediction of leucine-rich nuclear export signals. , 2004, Protein engineering, design & selection : PEDS.

[62]  J. Downing,et al.  Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. , 2002, Blood.

[63]  G. Daley,et al.  HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors , 2002, Cell.

[64]  Minoru Yoshida,et al.  CRM1 Is an Export Receptor for Leucine-Rich Nuclear Export Signals , 1997, Cell.

[65]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. , 1997, Immunity.

[66]  G. Sauvageau,et al.  Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.