New Bias Calibration for Robust Estimation in Small Areas

Using sample surveys as a cost effective tool to provide estimates for characteristics of interest at population and sub-populations (area/domain) level has a long tradition in “small area estimation”. However, the existence of outliers in the sample data can significantly affect the estimation for areas in which they occur, especially where the domain-sample size is small. Based on existing robust estimators for small area estimation we propose two novel approaches for bias calibration. A series of simulations shows that our methods lead to more efficient estimators in comparison with other existing bias-calibration methods. As a real data example we apply our estimators to obtain Gini coefficients in labour market areas of the Tuscany region of Italy, where our sources of information are the EU-SILC survey and the Italian census. This analysis shows that the new methods reveal a different picture than existing methods. We extend our ideas to predictions for non-sampled areas. keywords: small area estimation, robust estimation, bias calibration, non-linear population parameters.

[1]  Rachel M. Harter,et al.  An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data , 1988 .

[2]  Robert Chambers,et al.  Outlier robust small area estimation , 2014 .

[3]  R. Fay,et al.  Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .

[4]  Monica Pratesi,et al.  Nonparametric M-quantile regression using penalised splines , 2009 .

[5]  R. V. Mises On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .

[6]  Danny Pfeffermann,et al.  Empirical bootstrap bias correction and estimation of prediction mean square error in small area estimation , 2012 .

[7]  N. Tzavidis,et al.  On Bias-Robust Mean Squared Error Estimation for Pseudo-Linear Small Area Estimators , 2009 .

[8]  R. Chambers,et al.  Estimating distribution functions from survey data , 1986 .

[9]  Yves Tillé,et al.  Variance Estimation Using Linearization for Poverty and Social Exclusion Indicators , 2014 .

[10]  Tapabrata Maiti,et al.  Nonparametric estimation of mean-squared prediction error in nested-error regression models , 2006 .

[11]  Caterina Giusti,et al.  Small area estimation based on M-quantile models in presence of outliers in auxiliary variables , 2017, Stat. Methods Appl..

[12]  M. Pratesi Analysis of poverty data by small area estimation , 2016 .

[13]  G. Datta Model-Based Approach to Small Area Estimation , 2009 .

[14]  J. Rao,et al.  On estimating distribution functions and quantiles from survey data using auxiliary information , 1990 .

[15]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[16]  E. Ronchetti,et al.  Bias‐calibrated estimation from sample surveys containing outliers , 1998 .

[17]  Monica Pratesi,et al.  Small area estimation: the EBLUP estimator based on spatially correlated random area effects , 2008, Stat. Methods Appl..

[18]  S. Marchetti,et al.  ROBUST ESTIMATION OF SMALL‐AREA MEANS AND QUANTILES , 2010 .

[19]  S. Sperlich,et al.  Local polynomial inference for small area statistics: estimation, validation and prediction , 2010 .

[20]  P. Duchesne,et al.  Controlling the bias of robust small-area estimators , 2013 .

[21]  Lixia Diao,et al.  Robust small area estimation , 2008 .

[22]  J. Rao,et al.  Some Methods for Small Area Estimation , 2008 .

[23]  Robert Chambers,et al.  An Introduction to Model-Based Survey Sampling with Applications , 2012 .

[24]  George Deltas,et al.  The Small-Sample Bias of the Gini Coefficient: Results and Implications for Empirical Research , 2003, Review of Economics and Statistics.

[25]  Tapabrata Maiti,et al.  On parametric bootstrap methods for small area prediction , 2006 .

[26]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[27]  J. N. K. Rao,et al.  LINEARIZATION VARIANCE ESTIMATORS FOR SURVEY DATA , 2002 .

[28]  C. McCulloch,et al.  Misspecifying the Shape of a Random Effects Distribution: Why Getting It Wrong May Not Matter , 2011, 1201.1980.

[29]  J. Rao,et al.  The estimation of the mean squared error of small-area estimators , 1990 .

[30]  R. Chambers Outlier Robust Finite Population Estimation , 1986 .

[31]  Danny Pfeffermann,et al.  New important developments in small area estimation , 2013, 1302.4907.

[32]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[33]  Jiming Jiang,et al.  Mixed model prediction and small area estimation , 2006 .

[34]  Danny Pfeffermann,et al.  Small Area Estimation , 2011, International Encyclopedia of Statistical Science.

[35]  N. Tzavidis,et al.  M-quantile models for small area estimation , 2006 .

[36]  Robert Chambers,et al.  Small area estimation via M-quantile geographically weighted regression , 2012 .

[37]  Kesar Singh,et al.  Breakdown theory for bootstrap quantiles , 1998 .

[38]  Nicholas T. Longford,et al.  Missing Data and Small-Area Estimation , 2005 .