Theory of core-collapse supernovae
暂无分享,去创建一个
G. Martínez-Pinedo | A. Marek | H. Janka | K. Langanke | B. M. M. Astrophysics | G. Gsi | Darmstadt TU Darmstadt | B. M. M. F. Astrophysics
[1] G. Raffelt,et al. Self-induced conversion in dense neutrino gases : Pendulum in flavor space , 2006 .
[2] D. Frekers. Facets of charge-exchange reactions — from astrophysics to double beta decay , 2006 .
[3] J. Carlson,et al. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories , 2006, astro-ph/0606616.
[4] S. Woosley,et al. The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.
[5] S. Wanajo. The rp-Process in Neutrino-driven Winds , 2006, astro-ph/0602488.
[6] E. Müller,et al. Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions , 2006, astro-ph/0601302.
[7] M. Rampp,et al. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport II. Models for different progenitor stars , 2005, astro-ph/0512189.
[8] F. Kitaura,et al. Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.
[9] Chicago.,et al. Non-spherical core collapse supernovae - II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A , 2005, astro-ph/0511369.
[10] H. Janka,et al. Nucleosynthesis in Early Supernova Winds. II. The Role of Neutrinos , 2005, astro-ph/0511194.
[11] C. Ott,et al. A New Mechanism for Core-Collapse Supernova Explosions , 2005, astro-ph/0510687.
[12] C. Ott,et al. Multidimensional Radiation/Hydrodynamic Simulations of Proto-Neutron Star Convection , 2005, astro-ph/0510229.
[13] M. Aloy,et al. Axisymmetric simulations of magneto-rotational core collapse : dynamics and gravitational wave signal , 2005, astro-ph/0510184.
[14] K. Kotake,et al. Numerical Analysis of Standing Accretion Shock Instability with Neutrino Heating in Supernova Cores , 2005, astro-ph/0509765.
[15] Kei Kotake,et al. Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae , 2005, astro-ph/0509456.
[16] K. Stanek,et al. The Fate of the Most Massive Stars , 2005 .
[17] Knoxville,et al. Conservative special relativistic radiative transfer for multidimensional astrophysical simulations: motivation and elaboration , 2005, astro-ph/0510702.
[18] C. Horowitz,et al. Dynamical response of the nuclear “pasta” in neutron star crusts , 2005, nucl-th/0508044.
[19] H. E. Dalhed,et al. On Rapidly Rotating Magnetic Core-Collapse Supernovae , 2005, astro-ph/0508146.
[20] M. Rampp,et al. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - I. Numerical method and results for a 15 solar mass star , 2005, astro-ph/0507135.
[21] Hong Shen,et al. Postbounce Evolution of Core-Collapse Supernovae: Long-Term Effects of the Equation of State , 2005, astro-ph/0506620.
[22] U. Toronto,et al. On ion-ion correlation effects during stellar core collapse , 2005, astro-ph/0504291.
[23] T. Beers,et al. Nucleosynthetic signatures of the first stars , 2005, Nature.
[24] A. Marek,et al. Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations , 2005, astro-ph/0502161.
[25] M. Shibata,et al. Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities , 2004, astro-ph/0412243.
[26] Chris L. Fryer,et al. The Neutrino Bubble Instability: A Mechanism for Generating Pulsar Kicks , 2004, astro-ph/0412144.
[27] N. Giai,et al. Collective excitations in the inner crust of neutron stars : supergiant resonances , 2004, nucl-th/0411056.
[28] A. Mezzacappa,et al. Composition of the Innermost Core-Collapse Supernova Ejecta , 2004, astro-ph/0410208.
[29] H. Janka,et al. Nucleosynthesis in the Hot Convective Bubble in Core-Collapse Supernovae , 2004, astro-ph/0409446.
[30] S. Woosley,et al. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields , 2004, astro-ph/0409422.
[31] F. Weber. Strange quark matter and compact stars , 2004, astro-ph/0407155.
[32] S. Yamada,et al. Numerical Study on the Rotational Collapse of Strongly Magnetized Cores of Massive Stars , 2004 .
[33] A. Juodagalvis,et al. Neutral-current neutrino–nucleus cross sections for A∼50–65 nuclei , 2004, nucl-th/0404078.
[34] E. Quataert,et al. Viscosity and Rotation in Core-Collapse Supernovae , 2004, astro-ph/0403224.
[35] G. Martínez-Pinedo,et al. Supernova inelastic neutrino-nucleus cross sections from high-resolution electron scattering experiments and shell-model calculations. , 2004, Physical review letters.
[36] S. Nozawa,et al. Ion-Ion Correlation Effect on the Neutrino-Nucleus Scattering in Supernova Cores , 2004, astro-ph/0401488.
[37] A. Burrows,et al. Two-dimensional, Time-dependent, Multigroup, Multiangle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context , 2003, astro-ph/0312633.
[38] T. Ebisuzaki,et al. Phases of hot nuclear matter at subnuclear densities , 2003, nucl-th/0311083.
[39] M. Rampp,et al. Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods , 2003, astro-ph/0310662.
[40] Michael S. Warren,et al. The Collapse of Rotating Massive Stars in Three Dimensions , 2003, astro-ph/0309539.
[41] H. Janka,et al. Electron capture rates on nuclei and implications for stellar core collapse. , 2003, Physical review letters.
[42] Knoxville,et al. Conservative formulations of general relativistic kinetic theory , 2002, astro-ph/0212460.
[43] M. Rampp,et al. The mechanism of core-collapse supernovae and the ejection of heavy elements , 2002, astro-ph/0212317.
[44] Adam Burrows,et al. Shock Breakout in Core-Collapse Supernovae and Its Neutrino Signature , 2002, astro-ph/0211194.
[45] A. Mezzacappa,et al. Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.
[46] J. P. Laboratory,et al. The Magnetorotational Instability in Core-Collapse Supernova Explosions , 2002, astro-ph/0208128.
[47] H. Janka,et al. Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.
[48] T. Foglizzo. Non-radial instabilities of isothermal Bondi accretion with a shock: Vortical-acoustic cycle vs. post-shock acceleration , 2002, astro-ph/0206274.
[49] H. Janka,et al. Electron Neutrino Pair Annihilation: A New Source for Muon and Tau Neutrinos in Supernovae , 2002, astro-ph/0205006.
[50] H. Janka,et al. Radiation hydrodynamics with neutrinos - Variable Eddington factor method for core-collapse supernova simulations , 2002, astro-ph/0203101.
[51] G. Martínez-Pinedo,et al. Neutral-current neutrino reactions in the supernova environment , 2002, nucl-th/0201025.
[52] James R. Wilson,et al. Asymmetric Supernovae from Magnetocentrifugal Jets , 2001, astro-ph/0112020.
[53] C. Horowitz. Weak magnetism for antineutrinos in supernovae , 2001, astro-ph/0109209.
[54] G. Martínez-Pinedo,et al. Neutrino absorption cross sections in the supernova environment , 2001, nucl-th/0104017.
[55] T. Kajino,et al. The r-Process in Neutrino-driven Winds from Nascent, “Compact” Neutron Stars of Core-Collapse Supernovae , 2001, astro-ph/0102261.
[56] T. Foglizzo. Entropic-acoustic instability of shocked Bondi accretion I. What does perturbed Bondi accretion sound like? , 2001, astro-ph/0101056.
[57] K. Langanke,et al. Unblocking of the Gamow-Teller Strength in Stellar Electron Capture on Neutron-Rich Germanium Isotopes , 2000, nucl-th/0012036.
[58] S. Woosley,et al. Presupernova Evolution with Improved Rates for Weak Interactions , 2000, astro-ph/0011507.
[59] H. Janka. Conditions for shock revival by neutrino heating in core-collapse supernovae , 2000, astro-ph/0008432.
[60] S. Woosley,et al. Presupernova collapse models with improved weak-interaction rates. , 2000, Physical review letters.
[61] O. E. Bronson Messer,et al. Probing the gravitational well: no supernova explosion in spherical symmetry with general relativistic boltzmann neutrino transport , 2000, astro-ph/0006418.
[62] A. Mezzacappa,et al. Simulation of the spherically symmetric stellar core collapse, bounce, and postbounce evolution of a star of 13 solar masses with boltzmann neutrino transport, and its implications for the supernova mechanism. , 2000, Physical review letters.
[63] A. Burrows,et al. μ and τ neutrino thermalization and production in supernovae: Processes and time scales , 2000, astro-ph/0003054.
[64] K. Langanke,et al. Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments , 2000, nucl-th/0001018.
[65] D. García-Senz,et al. Coulomb corrections to the equation of state of nuclear statistical equilibrium matter: implications for SNIa nucleosynthesis and the accretion-induced collapse of white dwarfs , 1999 .
[66] G. Martínez-Pinedo,et al. Shell-model calculations of stellar weak interaction rates. I. Gamow-Teller distributions and spectra of nuclei in the mass range A = 45–65 , 1999, nucl-th/9903042.
[67] J. Lattimer,et al. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter , 1998, astro-ph/9811294.
[68] A. MacFadyen,et al. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.
[69] H. Toki,et al. Relativistic equation of state of nuclear matter for supernova explosion , 1998, nucl-th/9806095.
[70] H. Toki,et al. Relativistic equation of state of nuclear matter for supernova and neutron star , 1998, nucl-th/9805035.
[71] A. Burrows,et al. Many-body corrections to charged-current neutrino absorption rates in nuclear matter , 1998, astro-ph/9804264.
[72] A. Burrows,et al. Effects of correlations on neutrino opacities in nuclear matter , 1998, astro-ph/9801082.
[73] A. Mezzacappa,et al. Ion screening effects and stellar collapse , 1997 .
[74] H. Bethe. Supernova Shock. VIII. , 1997 .
[75] G. Raffelt,et al. Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes , 1997, astro-ph/9711132.
[76] J. Lattimer,et al. Neutrino interactions in hot and dense matter , 1997, astro-ph/9710115.
[77] F. B. Guimarães,et al. {sup 1}S{sub 0} pairing correlations in relativistic nuclear matter and the two-nucleon virtual state , 1997, nucl-th/9706071.
[78] C. Horowitz. Neutrino trapping in a supernova and the screening of weak neutral currents , 1997 .
[79] A. S. Umar,et al. An Investigation of Neutrino-driven Convection and the Core Collapse Supernova Mechanism Using Multigroup Neutrino Transport , 1996, The Astrophysical Journal.
[80] H. Bethe. The Supernova Shock. VI. , 1996 .
[81] S. Woosley,et al. Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.
[82] H. Bethe. Breakout of the Supernova Shock , 1996 .
[83] H. Janka,et al. Neutrino heating, convection, and the mechanism of Type-II supernova explosions. , 1996 .
[84] F. Thielemann,et al. Silicon Burning. I. Neutronization and the Physics of Quasi-Equilibrium , 1995, astro-ph/9511088.
[85] E. Henley,et al. Symmetries and Fundamental Interactions in Nuclei , 1995 .
[86] H. Bethe. The Supernova Shock , 1995 .
[87] A. Burrows,et al. On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.
[88] Y. Alhassid,et al. Shell-model Monte Carlo studies of fp-shell nuclei. , 1995, Physical review. C, Nuclear physics.
[89] Williams,et al. Gamow-Teller strength in 60,62,64Ni(n,p) reactions at 198 MeV. , 1995, Physical review. C, Nuclear physics.
[90] Fuller,et al. Matter-enhanced antineutrino flavor transformation and supernova nucleosynthesis. , 1995, Physical review. D, Particles and fields.
[91] H. Janka,et al. Neutron star recoils from anisotropic supernovae. , 1994 .
[92] James R. Wilson,et al. The r-process and neutrino-heated supernova ejecta , 1994 .
[93] K. Takahashi,et al. Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process , 1994 .
[94] King,et al. Spin-isospin strength distributions for fp shell nuclei: Results for the 55Mn(n,p), 56Fe(n,p), and 58Ni(n,p) reactions at 198 MeV. , 1994, Physical review. C, Nuclear physics.
[95] W. Benz,et al. Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.
[96] F. Swesty,et al. THE ROLE OF THE EQUATION OF STATE IN THE PROMPT PHASE OF TYPE II SUPERNOVAE , 1994 .
[97] Brown,et al. Spin-isospin strength distributions in f-p shell nuclei: A study of the 51V(n,p) and 59Co(n,p) reactions at 198 MeV. , 1993, Physical review. C, Nuclear physics.
[98] N. Olsson,et al. The 54,56Fe(n, p)54,56Mn reactions at En = 97 MeV , 1993 .
[99] H. Bethe. SN 1987A : an empirical and analytic approach , 1993 .
[100] Anthony Mezzacappa,et al. Stellar core collapse : a Boltzmann treatment of neutrino-electron scattering , 1993 .
[101] Anthony Mezzacappa,et al. Type II supernovae and Boltzmann neutrino transport : the infall phase , 1993 .
[102] A. Burrows,et al. An Instability in Neutron Stars at Birth , 1992, Science.
[103] W. Benz,et al. Postcollapse hydrodynamics of SN 1987A : two-dimensional simulations of the early evolution , 1992 .
[104] F. Osterfeld. Nuclear spin and isospin excitations , 1992 .
[105] F. Swesty,et al. A Generalized equation of state for hot, dense matter , 1991 .
[106] W. Haxton,et al. Neutrino - nucleus interactions in core collapse supernovae , 1991 .
[107] E. Baron,et al. The Effect of Iron Core Structure on Supernovae , 1990 .
[108] S. Colgate. Hot bubbles drive explosions , 1989, Nature.
[109] E. Myra,et al. Neutrino transport and the prompt mechanism for type II supernovae , 1989 .
[110] Wolfgang Hillebrandt,et al. Proceedings of the 7th Workshop on Nuclear Astrophysics , 1989 .
[111] James R. Wilson,et al. Supernovae from collapse of oxygen-magnesium-neon cores , 1988 .
[112] Haxton,et al. Neutrino heating in supernovae. , 1988, Physical review letters.
[113] H. Bethe,et al. Convection in supernova theory , 1987 .
[114] K. Nomoto. Evolution of 8--10 M sun Stars toward Electron Capture Supernovae. II. Collapse of an O + NE + MG Core , 1987 .
[115] H. Bethe,et al. Type II supernovae from prompt explosions. , 1987, Physical review letters.
[116] A. Burrows,et al. The birth of neutron stars , 1986 .
[117] T. Weaver,et al. Stellar Core Collapse and Supernova a , b , 1986 .
[118] B. A. Brown,et al. Experimental and Theoretical Gamow-Teller Beta-Decay Observables for the sd-Shell Nuclei , 1985 .
[119] James R. Wilson,et al. Revival of a stalled supernova shock by neutrino heating , 1985 .
[120] Steven E. Koonin,et al. Sub-saturation phases of nuclear matter , 1985 .
[121] D. Lamb,et al. Physical properties of hot, dense matter: The general case , 1985 .
[122] J. Wambach. Electron Capture in Stellar Collapse , 1984 .
[123] W. Fowler,et al. The quest for the origin of the elements. , 1984, Science.
[124] K. Nomoto. Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .
[125] D. G. Ravenhall,et al. Structure of matter below nuclear saturation density , 1983 .
[126] K. Nomoto,et al. The Crab Nebula's progenitor , 1982, Nature.
[127] G. Fuller. Neutron shell blocking of electron capture during gravitational collapse , 1982 .
[128] W. Fowler,et al. Stellar weak interaction rates for intermediate-mass nuclei. II. A = 21 to A = 60 , 1982 .
[129] Stephen V. Weber,et al. Homologously collapsing stellar cores , 1980 .
[130] H. Bethe,et al. Equation of state in the gravitational collapse of stars , 1979 .
[131] H. Bethe,et al. Neutron star matter , 1971 .
[132] S. Huang. Rotational behavior of the main-sequence stars and its plausible consequences concerning formation of planetary system. II. , 1965 .
[133] Richard H. White,et al. The Hydrodynamic Behavior of Supernovae Explosions , 1964 .
[134] J. Mathis. The Ratio of Helium and Hydrogen Abundances in Planetary Nebulae. , 1957 .
[135] A. R. Edmonds,et al. Angular Momentum in Quantum Mechanics , 1957 .
[136] H. Shapley. Studies based on the colors and magnitudes in stellar clusters. VIII. The luminosities and distances of 139 Cepheid variables. , 1918 .
[137] D. Isaksson. For the degree of Doctor of Philosophy Predation and Shorebirds : Predation Management , Habitat Effects , and Public Opinions , 2008 .
[138] D. Blaschke,et al. Physics of Neutron Star Interiors , 2001 .
[139] To be submitted to The Astrophysical Journal Mass Limits For Black Hole Formation , 1999 .
[140] M. Hashimoto,et al. Supernovae and Supernova Remnants: Supernova Nucleosynthesis in Massive Stars , 1996 .
[141] R. Fesen,et al. Recent Developments Concerning the Crab Nebula , 1985 .
[142] W. Hillebrandt,et al. Supernova explosions of massive stars. The mass range 8 to 10 M , 1984 .
[143] S. Woosley,et al. EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.
[144] S. Parsons. A FINE ANALYSIS OF TWO YELLOW SUPERGIANTS. I. PRELIMINARY RESULTS. , 1967 .
[145] R. Stothers. Cosmic Explosions , 1965, Nature.