Information, order and knowledge in economic and ecological systems: implications for material and energy use

Abstract Ecological and economic systems are open systems that require energy to change the thermodynamic states of materials from naturally occurring to more valued forms. These changes are accompanied by information flows and changes in the order of systems and their surroundings. In this paper, thermodynamics is used to assess these system changes and relate them to the knowledge present in a system. Particular emphasis is given to (1) the fundamental relationships among material, energy and information flows, and changes in order and knowledge, (2) the role of equilibrium and non-equilibrium thermodynamics in assessing system change, (3) the increasing role of material and energy flows through economic systems, and (4) the necessity for improved societal valuation of these flows.

[1]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[2]  Elias P. Gyftopoulos,et al.  Potential fuel effectiveness in industry , 1974 .

[3]  Bruce Hannon,et al.  A physical view of sustainability , 1993 .

[4]  N. Georgescu-Roegen Energy Analysis and Economic Valuation , 1979 .

[5]  Matthias Ruth,et al.  Integrating economics, ecology, and thermodynamics , 1993 .

[6]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[7]  R. Baierlein,et al.  Entropy in relation to incomplete knowledge , 1985 .

[8]  E. Schrödinger What Is Life , 1946 .

[9]  Matthias Ruth,et al.  Thermodynamic implications for natural resource extraction and technical change in U.S. copper mining , 1995 .

[10]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[11]  Andrew F. Rex,et al.  Resource Letter MD-1: Maxwell's Demon , 1990 .

[12]  G. Gladyshev Classical thermodynamics, tandemism and biological evolution. , 1982, Journal of theoretical biology.

[13]  Robert E. Ulanowicz,et al.  Identifying the Structure of Cycling in Ecosystems , 1983 .

[14]  C. Hall,et al.  Energy and the U.S. Economy: A Biophysical Perspective , 1984, Science.

[15]  Daniel R. Brooks,et al.  Evolution as entropy: Toward a unified theory of biology , 1987 .

[16]  Clark W. Bullard,et al.  Information, production and utility , 1993 .

[17]  L. Johnson The Thermodynamic Origin of Ecosystems , 1981 .

[18]  P. Chapman,et al.  Metal Resources and Energy , 1983 .

[19]  Ilya Prigogine,et al.  From Being To Becoming , 1980 .

[20]  R. Ulanowicz,et al.  Life and the production of entropy , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  S. H. Schurr,et al.  Energy, Productivity, and Economic Growth , 1985 .

[22]  Robert W. Bosserman,et al.  Energetics and systems , 1982 .

[23]  Charles Perrings,et al.  Economy and environment : a theoretical essay on the interdependence of economic and environmental systems , 1987 .

[24]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[25]  Léon Nicholas Brillouin,et al.  Scientific Uncertainty and Information , 1964 .

[26]  Malte Faber,et al.  Entropy, Environment and Resources: An Essay in Physio-Economics , 1987 .

[27]  R. Ayres Optimal investment policies with exhaustible resources: An information-based model , 1988 .

[28]  Caam Cees Withagen,et al.  Pollution, abatement and balanced growth , 1995 .

[29]  M. Tribus Thermostatics and thermodynamics , 1961 .

[30]  J. Proops Organisation and dissipation in economic systems , 1983 .

[31]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[32]  P. Victor Pollution: Economy and Environment , 1972 .

[33]  Takeshi Murota,et al.  Environmental economics : the analysis of a major interface , 1987 .