暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.
[2] Bruno Vallet,et al. TerraMobilita/iQmulus urban point cloud analysis benchmark , 2015, Comput. Graph..
[3] Antonio M. López,et al. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[4] Jan Boehm,et al. A review on deep learning techniques for 3D sensed data classification , 2019, Remote. Sens..
[5] David Griffiths,et al. Weighted Point Cloud Augmentation for Neural Network Training Data Class-Imbalance , 2019, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
[6] François Goulette,et al. Paris-rue-Madame Database - A 3D Mobile Laser Scanner Dataset for Benchmarking Urban Detection, Segmentation and Classification Methods , 2014, ICPRAM.
[7] Germán Ros,et al. CARLA: An Open Urban Driving Simulator , 2017, CoRL.
[8] Marc Pollefeys,et al. Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark , 2017, ArXiv.
[9] Andreas Uhl,et al. BlenSor: Blender Sensor Simulation Toolbox , 2011, ISVC.
[10] Fei-Fei Li,et al. ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[11] Kurt Keutzer,et al. SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).
[12] Luc Van Gool,et al. The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.
[13] Kurt Keutzer,et al. SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud , 2018, 2019 International Conference on Robotics and Automation (ICRA).
[14] François Goulette,et al. Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification , 2017, Int. J. Robotics Res..
[15] Pietro Perona,et al. Microsoft COCO: Common Objects in Context , 2014, ECCV.