Target Detection Based on Random Forest Metric Learning

Target detection is aimed at detecting and identifying target pixels based on specific spectral signatures, and is of great interest in hyperspectral image (HSI) processing. Target detection can be considered as essentially a binary classification. Random forests have been effectively applied to the classification of HSI data. However, random forests need a huge amount of labeled data to achieve a good performance, which can be difficult to obtain in target detection. In this paper, we propose an efficient metric learning detector based on random forests, named the random forest metric learning (RFML) algorithm, which combines semimultiple metrics with random forests to better separate the desired targets and background. The experimental results demonstrate that the proposed method outperforms both the state-of-the-art target detection algorithms and the other classical metric learning methods.

[1]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[2]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[3]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[4]  Mahdieh Soleymani Baghshah,et al.  Non-linear metric learning using pairwise similarity and dissimilarity constraints and the geometrical structure of data , 2010, Pattern Recognit..

[5]  David W. Messinger,et al.  Spectral image complexity estimated through local convex hull volume , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[6]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[7]  Bo Du,et al.  Target detection based on a dynamic subspace , 2014, Pattern Recognit..

[8]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[9]  Horst Bischof,et al.  Semi-Supervised Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Changshui Zhang,et al.  Classification of gene-expression data: The manifold-based metric learning way , 2006, Pattern Recognit..

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Chein-I Chang,et al.  Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis , 2005, IEEE Trans. Geosci. Remote. Sens..

[14]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[15]  Qian Du,et al.  Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery , 2003, Pattern Recognit..

[16]  Bo Du,et al.  Hybrid Detectors Based on Selective Endmembers , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Bo Du,et al.  Random-Selection-Based Anomaly Detector for Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Chein-I Chang,et al.  Constrained subpixel target detection for remotely sensed imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  Jason J. Corso,et al.  Efficient max-margin metric learning , 2012 .

[20]  Ran Xu,et al.  Random forests for metric learning with implicit pairwise position dependence , 2012, KDD.

[21]  M. I. Elbakary,et al.  Kernel and stochastic expectation maximization fusion for target detection in hyperspectral imagery , 2011, Defense + Commercial Sensing.

[22]  Nenghai Yu,et al.  Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering , 2009, NIPS.

[23]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[24]  Lei Wang,et al.  Scalable Large-Margin Mahalanobis Distance Metric Learning , 2010, IEEE Transactions on Neural Networks.

[25]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[26]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[27]  Feiping Nie,et al.  Learning a Mahalanobis distance metric for data clustering and classification , 2008, Pattern Recognit..

[28]  J. Settle,et al.  Linear mixing and the estimation of ground cover proportions , 1993 .

[29]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[30]  L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).

[31]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[32]  Liangpei Zhang,et al.  Sparse Transfer Manifold Embedding for Hyperspectral Target Detection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Chin-Chun Chang,et al.  A boosting approach for supervised Mahalanobis distance metric learning , 2012, Pattern Recognit..

[34]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[35]  Qian Du,et al.  A signal-decomposed and interference-annihilated approach to hyperspectral target detection , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Jitendra Malik,et al.  Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[39]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..

[40]  M. I. Elbakary,et al.  Target detection in high-dimensional space using a stochastic expectation maximization algorithm , 2007, SPIE Defense + Commercial Sensing.

[41]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Bo Du,et al.  A Subspace-Based Change Detection Method for Hyperspectral Images , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[43]  Chein-I. Chang,et al.  An ROC analysis for subpixel detection , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[44]  Wojciech Pieczynski,et al.  SEM algorithm and unsupervised statistical segmentation of satellite images , 1993, IEEE Trans. Geosci. Remote. Sens..

[45]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[46]  Misha Pavel,et al.  Adjustment Learning and Relevant Component Analysis , 2002, ECCV.

[47]  Stefania Matteoli,et al.  An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[48]  D. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications: a signal processing perspective , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[49]  Jiwen Lu,et al.  Discriminative Multimetric Learning for Kinship Verification , 2014, IEEE Transactions on Information Forensics and Security.

[50]  Qian Du,et al.  Foreword to the Special Issue on Spectral Unmixing of Remotely Sensed Data , 2011 .

[51]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[52]  Bo Du,et al.  A Discriminative Metric Learning Based Anomaly Detection Method , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Li Ma,et al.  Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding , 2010 .

[54]  Fei Wang,et al.  Semisupervised Metric Learning by Maximizing Constraint Margin , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).