A Mass Transportation Model for the Optimal Planning of an Urban Region

We propose a model to describe the optimal distributions of residents and services in a prescribed urban area. The cost functional takes into account the transportation costs (according to a Monge-Kantorovich-type criterion) and two additional terms which penalize concentration of residents and dispersion of services. The tools we use are the Monge-Kantorovich mass transportation theory and the theory of nonconvex functionals defined on measures.

[1]  Masahisa Fujita Urban Economic Theory , 1989 .

[2]  G. Carlier,et al.  Equilibrium structure of a bidimensional asymmetric city , 2007 .

[3]  T. Raa Spatial economics: density, potential, and flow: Martin BECKMANN and Tönu PUU Volume 14 in: Studies in Regional Science and Urban Economics, North-Holland, Amsterdam, 1985, xii + 276 pages, Dfl. 125.00 , 1986 .

[4]  C. Villani Topics in Optimal Transportation , 2003 .

[5]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[6]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[7]  John R. Beaumont,et al.  Spatial Economics: Density, Potential and Flow , 1986 .

[8]  Filippo Santambrogio Transport and concentration problems with interaction effects , 2007, J. Glob. Optim..

[9]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[10]  G. Carlier,et al.  A variational model for urban planning with traffic congestion , 2005 .

[11]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[12]  Eugene Stepanov,et al.  Optimal Urban Networks via Mass Transportation , 2008 .

[13]  Filippo Santambrogio Variational Problems in Transport Theory with Mass Concentration , 2008 .

[14]  G. Carlier,et al.  The Structure of Cities , 2004, J. Glob. Optim..

[15]  Esteban Rossi-Hansberg,et al.  ON THE INTERNAL STRUCTURE OF CITIES , 2002 .

[16]  Giuseppe Buttazzo Three Optimization Problems in Mass Transportation Theory , 2006 .

[17]  Guy Bouchitté,et al.  New lower semicontinuity results for nonconvex functionals defined on measures , 1990 .

[18]  Filippo Santambrogio,et al.  Misure ottime per costi di trasporto e funzionali locali , 2003 .