Tilting Modules and Tilting Torsion Pairs

Tilting modules, generalising the notion of progenerator, furnish equivalences between pieces of module categories. This paper is dedicated to study how much these pieces say about the whole category. We will survey the existing results in the literature, introducing also some new insights.

[1]  E. Cline,et al.  Derived categories and Morita theory , 1986 .

[2]  M. C. R. Butler,et al.  Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors , 1980 .

[3]  J. Lo Torsion pairs and filtrations in abelian categories with tilting objects , 2013, 1302.2991.

[4]  S. Bazzoni A characterization of n-cotilting and n-tilting modules , 2004 .

[5]  F. Mattiello,et al.  A classification theorem for $t$-structures , 2014, 1412.8679.

[6]  Constant families of t-structures on derived categories of coherent sheaves , 2006, math/0606013.

[7]  F. U. Coelho,et al.  Infinitely generated tilting modules of finite projective dimension , 2001 .

[8]  J. Trlifaj,et al.  Approximations and Endomorphism Algebras of Modules , 2006 .

[9]  A. Tonolo TILTING MODULES OF FINITE PROJECTIVE DIMENSION: SEQUENTIALLY STATIC AND COSTATIC MODULES , 2002 .

[10]  J. Šťovíček Derived equivalences induced by big cotilting modules , 2013, 1308.1804.

[11]  Y. Miyashita Tilting modules of finite projective dimension , 1986 .

[12]  I. Reiten,et al.  Tilting in Abelian Categories and Quasitilted Algebras , 1996 .

[13]  Bernt Tore Jensen,et al.  Filtrations in abelian categories with a tilting object of homological dimension two , 2010, 1007.3428.

[14]  Leovigildo Alonso Tarrío,et al.  Construction of t-structures and equivalences of derived categories , 2003 .

[15]  S. Bazzoni The 𝑡-structure induced by an 𝑛-tilting module , 2016, Transactions of the American Mathematical Society.