Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity

[1]  A. Patapoutian,et al.  PIEZO1 transduces mechanical itch in mice , 2022, Nature.

[2]  A. Das,et al.  Estrogen metabolites increase nociceptor hyperactivity in a mouse model of uterine pain , 2022, JCI insight.

[3]  Zizhen Zhang,et al.  Gut-innervating TRPV1+ Neurons Drive Chronic Visceral Pain via Microglial P2Y12 Receptor , 2021, Cellular and molecular gastroenterology and hepatology.

[4]  Daoshu Luo,et al.  Extracellular ATP and cAMP signaling promote Piezo2‐dependent mechanical allodynia after trigeminal nerve compression injury , 2021, Journal of neurochemistry.

[5]  Hongzhen Hu,et al.  Mechanosensitive TRPV4 is required for crystal-induced inflammation , 2021, Annals of the Rheumatic Diseases.

[6]  G. Apodaca,et al.  Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception , 2021, JCI insight.

[7]  A. Jobling,et al.  Piezo2 Knockdown Inhibits Noxious Mechanical Stimulation and NGF-Induced Sensitization in A-Delta Bone Afferent Neurons , 2021, Frontiers in Physiology.

[8]  J. Liljencrantz,et al.  Innocuous pressure sensation requires A-type afferents but not functional ΡΙΕΖΟ2 channels in humans , 2021, Nature Communications.

[9]  J. Raes,et al.  Local immune response to food antigens drives meal-induced abdominal pain , 2021, Nature.

[10]  M. Camilleri,et al.  Irritable bowel syndrome , 2020, The Lancet.

[11]  G. Boeckxstaens,et al.  Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS , 2020, Gut.

[12]  Kara L. Marshall,et al.  PIEZO2 in sensory neurons and urothelial cells coordinates urination , 2020, Nature.

[13]  H. Koerber,et al.  Unique Molecular Characteristics of Visceral Afferents Arising from Different Levels of the Neuraxis: Location of Afferent Somata Predicts Function and Stimulus Detection Modalities , 2020, The Journal of Neuroscience.

[14]  Yong Ho Kim,et al.  Functional Expression of Piezo1 in Dorsal Root Ganglion (DRG) Neurons , 2020, International journal of molecular sciences.

[15]  Y. Yudin,et al.  Gi‐coupled receptor activation potentiates Piezo2 currents via Gβγ , 2020, EMBO reports.

[16]  O. Hamill,et al.  PIEZO1 Is Selectively Expressed in Small Diameter Mouse DRG Neurons Distinct From Neurons Strongly Expressing TRPV1 , 2019, Front. Mol. Neurosci..

[17]  F. McGlone,et al.  An ultrafast system for signaling mechanical pain in human skin , 2019, Science Advances.

[18]  A. Eschalier,et al.  Inhibition of Cav3.2 calcium channels: A new target for colonic hypersensitivity associated with low‐grade inflammation , 2019, British journal of pharmacology.

[19]  Z. Helyes,et al.  Role of TRPV1 and TRPA1 Ion Channels in Inflammatory Bowel Diseases: Potential Therapeutic Targets? , 2019, Pharmaceuticals.

[20]  B. Martinac,et al.  Mammalian TRP ion channels are insensitive to membrane stretch , 2019, Journal of Cell Science.

[21]  J. Fichna,et al.  Focus on current and future management possibilities in inflammatory bowel disease-related chronic pain , 2018, International Journal of Colorectal Disease.

[22]  Kara L. Marshall,et al.  The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice , 2018, Science Translational Medicine.

[23]  J. Liljencrantz,et al.  PIEZO2 mediates injury-induced tactile pain in mice and humans , 2018, Science Translational Medicine.

[24]  You-min Lin,et al.  Novel Insights Into the Mechanisms of Abdominal Pain in Obstructive Bowel Disorders , 2018, Front. Integr. Neurosci..

[25]  B. Davis,et al.  Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses , 2018, The Journal of Neuroscience.

[26]  Alex Gutteridge,et al.  Single-cell RNAseq reveals seven classes of colonic sensory neuron , 2018, Gut.

[27]  David G. Morris,et al.  CGRPα within the Trpv1-Cre population contributes to visceral nociception. , 2018, American journal of physiology. Gastrointestinal and liver physiology.

[28]  E. Smith,et al.  Functional and Molecular Characterization of Mechanoinsensitive "Silent" Nociceptors. , 2017, Cell reports.

[29]  B. Greenwood-Van Meerveld,et al.  Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin , 2017, Front. Syst. Neurosci..

[30]  Hongzhen Hu,et al.  Sensory TRP channels contribute differentially to skin inflammation and persistent itch , 2017, Nature Communications.

[31]  D. Zamanillo,et al.  Pharmacological sensitivity of reflexive and nonreflexive outcomes as a correlate of the sensory and affective responses to visceral pain in mice , 2017, Scientific Reports.

[32]  T. Masuoka,et al.  TRPA1 Channels Modify TRPV1-Mediated Current Responses in Dorsal Root Ganglion Neurons , 2017, Front. Physiol..

[33]  J. Christianson,et al.  Ion channels, ion channel receptors, and visceral hypersensitivity in irritable bowel syndrome , 2016, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[34]  G. Farrugia,et al.  Ion channelopathies in functional GI disorders. , 2016, American journal of physiology. Gastrointestinal and liver physiology.

[35]  C. Bönnemann,et al.  The Role of PIEZO2 in Human Mechanosensation. , 2016, The New England journal of medicine.

[36]  K. Bielefeldt,et al.  Physiology of Visceral Pain. , 2016, Comprehensive Physiology.

[37]  L. Watkins,et al.  Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain , 2016, Translational psychiatry.

[38]  D. Ardid,et al.  Colonic overexpression of the T‐type calcium channel Cav3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients , 2016, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[39]  Manuela Schmidt,et al.  Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief , 2015, Channels.

[40]  V. Tiwari,et al.  Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain , 2015, Neuron.

[41]  T. Rohacs,et al.  Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides , 2015, Science Signaling.

[42]  G. Gebhart,et al.  In vitro functional characterization of mouse colorectal afferent endings. , 2015, Journal of visualized experiments : JoVE.

[43]  A. Patapoutian,et al.  Mechanically Activated Ion Channels , 2015, Neuron.

[44]  Valérie Bégay,et al.  Piezo2 is the major transducer of mechanical forces for touch sensation in mice , 2014, Nature.

[45]  J. M. Torres,et al.  A role for Piezo2 in EPAC1-dependent mechanical allodynia , 2013, Nature Communications.

[46]  B. Davis,et al.  TRPV1 and TRPA1 Antagonists Prevent the Transition of Acute to Chronic Inflammation and Pain in Chronic Pancreatitis , 2013, The Journal of Neuroscience.

[47]  S. Hwang,et al.  Voluntary movements as a possible non-reflexive pain assay , 2013, Molecular pain.

[48]  A. Kawabata,et al.  Involvement of the endogenous hydrogen sulfide/Cav3.2 T‐type Ca2+ channel pathway in cystitis‐related bladder pain in mice , 2012, British journal of pharmacology.

[49]  Manuela Schmidt,et al.  Inflammatory signals enhance piezo2-mediated mechanosensitive currents. , 2012, Cell reports.

[50]  M. Fernandes,et al.  The functions of TRPA1 and TRPV1: moving away from sensory nerves , 2012, British journal of pharmacology.

[51]  E. Schwartz,et al.  Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. , 2012, American journal of physiology. Gastrointestinal and liver physiology.

[52]  A. Eschalier,et al.  T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome , 2011, Proceedings of the National Academy of Sciences.

[53]  T. Okui,et al.  Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels , 2011, Neuroscience.

[54]  S. Brookes,et al.  Identification of the Visceral Pain Pathway Activated by Noxious Colorectal Distension in Mice , 2011, Front. Neurosci..

[55]  S. Mishra,et al.  TRPV1‐lineage neurons are required for thermal sensation , 2011, The EMBO journal.

[56]  A. Akopian Regulation of nociceptive transmission at the periphery via TRPA1-TRPV1 interactions. , 2011, Current pharmaceutical biotechnology.

[57]  Manuela Schmidt,et al.  Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels , 2010, Science.

[58]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[59]  David J Anderson,et al.  Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli , 2009, Proceedings of the National Academy of Sciences.

[60]  J. Sengupta Visceral pain: the neurophysiological mechanism. , 2009, Handbook of experimental pharmacology.

[61]  J. Valtschanoff,et al.  Vanilloid receptor TRPV1-positive sensory afferents in the mouse ankle and knee joints , 2008, Brain Research.

[62]  M. Cappell,et al.  Mechanical obstruction of the small bowel and colon. , 2008, The Medical clinics of North America.

[63]  P. Anand,et al.  Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain , 2008, Gut.

[64]  C. Jensen,et al.  Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. , 2007, Gastroenterology.

[65]  David Julius,et al.  TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents , 2006, Cell.

[66]  G. Gebhart,et al.  The Mechanosensitivity of Mouse Colon Afferent Fibers and Their Sensitization by Inflammatory Mediators Require Transient Receptor Potential Vanilloid 1 and Acid-Sensing Ion Channel 3 , 2005, The Journal of Neuroscience.

[67]  M. Hanani,et al.  Morphological and electrophysiological changes in mouse dorsal root ganglia after partial colonic obstruction. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[68]  P. McNaughton,et al.  Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling , 2004, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[69]  H. Berthoud,et al.  Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract , 2003, The Journal of comparative neurology.

[70]  Peter McIntyre,et al.  ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures , 2003, Cell.

[71]  I. Nagy,et al.  Vanilloid receptor 1 expression in the rat urinary tract , 2002, Neuroscience.

[72]  P. Pasricha,et al.  A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. , 2000, Gastroenterology.

[73]  G. Gebhart,et al.  A role for spinal nitric oxide in mediating visceral hyperalgesia in the rat. , 1999, Gastroenterology.