Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec

Context. An increasing number of high-resolution stellar spectra is available today thanks to many past and ongoing extensive spectroscopic surveys. Consequently, the scientific community needs automatic procedures to derive atmospheric parameters and individual element abundances. Aims. Based on the widely known SPECTRUM code by R.O. Gray, we developed an integrated spectroscopic software framework suitable for the determination of atmospheric parameters (i.e., e ective temperature, surface gravity, metallicity) and individual chemical abundances. The code, named iSpec and freely distributed, is written mainly in Python and can be used on di erent platforms. Methods. iSpec can derive atmospheric parameters by using the synthetic spectral fitting technique and the equivalent width method. We validated the performance of both approaches by developing two di erent pipelines and analyzing the Gaia FGK benchmark stars spectral library. The analysis was complemented with several tests designed to assess other aspects, such as the interpolation of model atmospheres and the performance with lower quality spectra. Results. We provide a code ready to perform automatic stellar spectral analysis. We successfully assessed the results obtained for FGK stars with high-resolution and high signal-to-noise spectra.

[1]  P. Stetson,et al.  DAOSPEC: An Automatic Code for Measuring Equivalent Widths in High-Resolution Stellar Spectra , 2008, 0811.2932.

[2]  C. Allende Prieto,et al.  APOGEE: The Apache Point Observatory Galactic Evolution Experiment , 2008, 0809.2362.

[3]  U. Heiter,et al.  The Gaia FGK benchmark stars - High resolution spectral library , 2014, 1403.3090.

[4]  Porto,et al.  A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES) , 2007, astro-ph/0703696.

[5]  F. Ferraro,et al.  GALA: AN AUTOMATIC TOOL FOR THE ABUNDANCE ANALYSIS OF STELLAR SPECTRA , 2013, 1302.3618.

[6]  H. Tabernero,et al.  Chemically tagging the Hyades Supercluster - A homogeneous sample of F6-K4 kinematically selected northern stars , 2012, 1205.4879.

[7]  José A. Gómez Hernández,et al.  Gaia FGK benchmark stars: Metallicity , 2013, 1309.1099.

[8]  F. Castelli,et al.  New ATLAS9 And MARCS Model Atmosphere Grids For The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2012 .

[9]  R. Lallement,et al.  TAPAS, a web-based service of atmospheric transmission computation for astronomy , 2013, 1311.4169.

[10]  S. Lucatello,et al.  MOOG: LTE line analysis and spectrum synthesis , 2012 .

[11]  Pierre Demarque,et al.  The Y2 Stellar Evolutionary Tracks , 2002, astro-ph/0210201.

[12]  U. Heiter,et al.  Geometry of giant star model atmospheres: a consistency test , 2006 .

[13]  C. Hansen,et al.  Stellar atmosphere parameters with MAx, a MAssive compression of x^2 for spectral fitting , 2010, 1001.1223.

[14]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[15]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[16]  Astronomy,et al.  A new procedure for defining a homogenous line-list for solar-type stars , 2013, 1311.7169.

[17]  C. Prieto,et al.  On the interpolation of model atmospheres and high-resolution synthetic stellar spectra , 2013, 1301.4843.

[18]  A. Vallenari,et al.  FAMA: An automatic code for stellar parameter and abundance determination , 2013, 1307.2367.

[19]  Christopher J. Corbally,et al.  The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars , 1994 .

[20]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[21]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[22]  Astronomy Department,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-A , 2008, 0803.1460.

[23]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[24]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[25]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[26]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[27]  Jan Kalina,et al.  Outlier detection by means of robust regression estimators for use in engineering science , 2009 .

[28]  M. Holman,et al.  IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS , 2012, 1208.1268.

[29]  Blaine A. Bell,et al.  Atomic Line Data , 1995 .

[30]  A. Bijaoui,et al.  Automated derivation of stellar atmospheric parameters and chemical abundances: the MATISSE algorithm , 2006 .

[31]  A. Vallenari,et al.  DOOp, an automated wrapper for DAOSPEC , 2013, 1312.3676.

[32]  E. Kirby Grids of ATLAS9 Model Atmospheres and MOOG Synthetic Spectra , 2011, 1103.1385.

[33]  M. Asplund,et al.  Accurate abundance patterns of solar twins and analogs - Does the anomalous solar chemical composition come from planet formation? , 2009, 0911.1893.

[34]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[35]  M. Asplund,et al.  The Solar Chemical Composition , 2007 .

[36]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[37]  P. Petit,et al.  PolarBase: A Database of High-Resolution Spectropolarimetric Stellar Observations , 2014, 1401.1082.

[38]  Carlos Allende Prieto,et al.  Velocities from Cross-Correlation: A Guide for Self-Improvement , 2007, 0707.2764.