When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance

Detailed structural organization in organic films are investigated using grazing incidence X-ray scattering (GIXS) methods. The key structural features are revealed and the influence of specific side chain positions and shapes are characterized. A correlation between the fill factor (FF) of the corresponding device and the tightness of the polymer chain stacking inspires a new set of structural parameters for design of materials to optimize device efficiency.

[1]  Alex B. F. Martinson,et al.  Anode Interfacial Tuning via Electron‐Blocking/Hole‐Transport Layers and Indium Tin Oxide Surface Treatment in Bulk‐Heterojunction Organic Photovoltaic Cells , 2010 .

[2]  Luping Yu,et al.  Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. , 2010, The journal of physical chemistry. B.

[3]  H. Sirringhaus,et al.  Materials Challenges and Applications of Solution-Processed Organic Field-Effect Transistors , 2008 .

[4]  Gang Li,et al.  Control of the nanoscale crystallinity and phase separation in polymer solar cells , 2008 .

[5]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[6]  Keng S. Liang,et al.  Simultaneous Use of Small‐ and Wide‐Angle X‐ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells , 2008 .

[7]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[8]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[9]  D. Ginger,et al.  Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties. , 2010, ACS nano.

[10]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[11]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[12]  R. Gysel,et al.  Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends , 2010 .

[13]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[14]  Christoph J. Brabec,et al.  Bipolar Charge Transport in PCPDTBT‐PCBM Bulk‐Heterojunctions for Photovoltaic Applications , 2008 .

[15]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[16]  P. Heremans,et al.  Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. , 2009, Accounts of chemical research.

[17]  Hagen Klauk,et al.  Organic electronics : materials, manufacturing and applications , 2006 .

[18]  M. Wasielewski,et al.  Designed Bithiophene-Based Interfacial Layer for High-Efficiency Bulk-Heterojunction Organic Photovoltaic Cells. Importance of Interfacial Energy Level Matching , 2010 .

[19]  Zhenan Bao,et al.  Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents , 2007 .

[20]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[21]  J. Bernède,et al.  Effect of the interface morphology on the fill factor of plastic solar cells , 2005 .

[22]  Bong-Gi Kim,et al.  Effective variables to control the fill factor of organic photovoltaic cells. , 2009, ACS applied materials & interfaces.

[23]  Mm Martijn Wienk,et al.  The influence of side chains on solubility and photovoltaic performance of dithiophene-thienopyrazine small band gap copolymers , 2009 .

[24]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[25]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[26]  Daniel Moses,et al.  Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers , 2009 .