Shotgun Transcriptome and Isothermal Profiling of SARS-CoV-2 Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions

Abstract A global pandemic of the 2019 coronavirus disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for over 150,000 deaths worldwide, including >12,000 deaths in New York City (NYC) alone. Given the rapid emergence of this pathogen, little is known about its genetic variation, immune system interactions, population prevalence, and environmental distribution. As a result, there is a pressing clinical and public health need for scalable molecular technologies that can rapidly detect SARS-CoV-2 infection and robustly interrogate strain evolution and host response in patients. To address these challenges, we designed a loop-mediated isothermal amplification (LAMP) assay to identify SARS-CoV-2 infection within 30 minutes of application, including directly from lysed cells. Simultaneously, we developed a large-scale host and viral transcriptomic profiling platform that employs total RNA sequencing (RNA-seq) of nasopharyngeal swab specimens. Applying both technologies to 442 samples, spanning 338 clinical samples tested for SARS-CoV-2, 86 environmental samples from the NYC subway, and 14 controls, we assembled a broad molecular picture of the COVID-19 epidemic in NYC. We found close concordance between viral titers measured with our rapid LAMP assay, RNA-seq, and the state-of-the-art RT-PCR. Full transcriptomic analyses revealed a distinct subset of the Western European clade A2a as the predominant genomic subtype in NYC cases, which was defined by two single nucleotide variants in nsp2 and ORF 3a and a clade-specific, 9-bp in-frame deletion in the virulence factor nsp1. High SARS-CoV2 viral titers were associated with distinct host transcriptional responses, including activation of the ACE2 gene and interferon response genes (e.g., IFIT1). Since ACE inhibitors (ACEIs) can also increase ACE2 expression, outcomes for patients taking ACEIs were examined, and showed a significantly increased risk of intubation and death. Our results demonstrate the utility of two molecular diagnostic platforms in defining the genetic features of an evolving global pandemic and provide insights that can aid future COVID-19 diagnostics, public health monitoring, and therapeutic options.

Nicholas P. Tatonetti | Iman Hajirasouliha | Christopher E. Mason | David Danko | Fritz J. Sedlazeck | Shawn Levy | Hanna Rennert | Marcin Imielinski | Jonathan Foox | Nathan A. Tanner | Michael J. Zeitz | Cem Meydan | Undina Gisladottir | Dmitry Meleshko | Daniela Bezdan | Priya Velu | Bradley W. Langhorst | Ebrahim Afshinnekoo | Jenny Xiang | Lars F. Westblade | Joel Rosiene | Massimo Loda | M. Loda | C. Mason | I. Hajirasouliha | J. Thierry-Mieg | D. Thierry-Mieg | M. Imieliński | S. Levy | F. Sedlazeck | N. Tatonetti | A. Melnick | N. Tanner | T. Iftner | R. Schwartz | Dong-Li Xu | D. Butler | D. Bezdan | M. Mackay | Cem Meydan | Ebrahim Afshinnekoo | B. Langhorst | D. Meleshko | L. Westblade | J. Sipley | Shixiu Wu | H. Rennert | M. Salvatore | M. Zietz | M. Sierra | Alon Shaiber | J. Rosiene | Jonathan Foox | J. Xiang | Christopher Mozsary | M. Cushing | N. A. Ivanov | A. Craney | Ari Melnick | P. Velu | Mirella Salvatore | Arryn Craney | Dong Xu | D. Danko | Alon Shaiber | Matthew MacKay | Stacy M. Horner | Chandrima Bhattacharya | B. Young | Thomas Iftner | Chandrima Bhattacharya | Daniel J Butler | Krista Ryon | Maria A Sierra | Phyllis Ruggiero | Craig D. Westover | Christopher Mozsary | Nikolay A. Ivanov | Diana Pohle | Michael Zeitz | Vijendra Ramlall | Craig Westover | Benjamin Young | Justyn Gawrys | Angelika Iftner | John Sipley | Lin Cong | Melissa M. Cushing | Maria A. Sierra | A. Iftner | V. Ramlall | U. Gisladottir | P. Ruggiero | L. Cong | P. Steel | A. Shemesh | Krista A. Ryon | D. Pohle | Justyna Gawrys | J. Foox | C. Mozsary | K. Ryon | J. Xiang | Undina Gisladottir | Vijendra Ramlall

[1]  Isaac I. Bogoch,et al.  Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States , 2020, Cell.

[2]  Fabian J Theis,et al.  SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes , 2020, Nature Medicine.

[3]  V. Pelechano,et al.  Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform , 2020, Clinical chemistry.

[4]  Qingbo Xu,et al.  Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19 , 2020, Circulation research.

[5]  Martin Stahl,et al.  Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2 , 2020, Cell.

[6]  Gintaras Deikus,et al.  Introductions and early spread of SARS-CoV-2 in the New York City area , 2020, Science.

[7]  G. Abecasis,et al.  Type 2 and interferon inflammation strongly regulate SARS-CoV-2 related gene expression in the airway epithelium , 2020, bioRxiv.

[8]  B. Sokhansanj,et al.  Characterizing geographical and temporal dynamics of novel coronavirus SARS-CoV-2 using informative subtype markers , 2020 .

[9]  Aviv Regev,et al.  LAMP-Seq: Population-Scale COVID-19 Diagnostics Using Combinatorial Barcoding , 2020, bioRxiv.

[10]  Wenjun Ma,et al.  Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China , 2020, Cell.

[11]  Roland Eils,et al.  SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells , 2020, The EMBO journal.

[12]  P. Vollmar,et al.  Virological assessment of hospitalized patients with COVID-2019 , 2020, Nature.

[13]  M. J. Broadhurst,et al.  Transmission Potential of SARS-CoV-2 in Viral Shedding Observed at the University of Nebraska Medical Center , 2020, medRxiv.

[14]  A. Verma,et al.  COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? , 2020, JAMA.

[15]  Philip L. Felgner,et al.  A serological assay to detect SARS-CoV-2 seroconversion in humans , 2020, medRxiv.

[16]  Ruiyun Li,et al.  Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) , 2020, Science.

[17]  Hyeshik Chang,et al.  The Architecture of SARS-CoV-2 Transcriptome , 2020, Cell.

[18]  Feng He,et al.  Coronavirus disease 2019: What we know? , 2020, Journal of medical virology.

[19]  Fabian J Theis,et al.  SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways , 2020, Nature Medicine.

[20]  Michael Roth,et al.  Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? , 2020, The Lancet Respiratory Medicine.

[21]  J. Xiang,et al.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study , 2020, The Lancet.

[22]  James O. Lloyd-Smith,et al.  Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 , 2020, medRxiv.

[23]  Ben Orsburn,et al.  In silico approach to accelerate the development of mass spectrometry-based proteomics methods for detection of viral proteins: Application to COVID-19 , 2020, bioRxiv.

[24]  Guixia Yu,et al.  Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay , 2020, medRxiv.

[25]  Hannah R. Meredith,et al.  The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application , 2020, Annals of Internal Medicine.

[26]  P. Vollmar,et al.  Virological assessment of hospitalized cases of coronavirus disease 2019 , 2020 .

[27]  Tobias Bleicker,et al.  Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster , 2020, medRxiv.

[28]  Nichollas E. Scott,et al.  Direct RNA sequencing and early evolution of SARS-CoV-2 , 2020, bioRxiv.

[29]  Rui Liu,et al.  Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020 , 2020, Clinica Chimica Acta.

[30]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[31]  Oon Tek Ng,et al.  Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. , 2020, JAMA.

[32]  Xiang Li,et al.  On the origin and continuing evolution of SARS-CoV-2 , 2020, National science review.

[33]  Hayden C. Metsky,et al.  CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design , 2020, bioRxiv.

[34]  Hayden C. Metsky,et al.  CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach , 2020 .

[35]  Guangchuang Yu,et al.  Using ggtree to Visualize Data on Tree‐Like Structures , 2020, Current protocols in bioinformatics.

[36]  Bernhard Liebl,et al.  Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV-2 in Bavaria, Germany, February 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[37]  N. Tanner,et al.  Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP , 2020, medRxiv.

[38]  K. Yuen,et al.  Clinical Characteristics of Coronavirus Disease 2019 in China , 2020, The New England journal of medicine.

[39]  Dan Xu,et al.  Positive RT-PCR Test Results in Patients Recovered From COVID-19. , 2020, JAMA.

[40]  Xin Li,et al.  Rapid colorimetric detection of COVID-19 coronavirus using a reverse tran-scriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic plat-form: iLACO , 2020, medRxiv.

[41]  E. Dong,et al.  An interactive web-based dashboard to track COVID-19 in real time , 2020, The Lancet Infectious Diseases.

[42]  Ruiyun Li,et al.  Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (COVID-19) , 2020, medRxiv.

[43]  R. Eggo,et al.  Effectiveness of airport screening at detecting travellers infected with 2019-nCoV , 2020, medRxiv.

[44]  B. Althouse,et al.  Enterovirus D68 outbreak detection through a syndromic disease epidemiology network. , 2020, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[45]  J. E. Muñoz-Medina,et al.  Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance , 2020, Nature Microbiology.

[46]  LAMP-Seq: Population-Scale COVID-19 Diagnostics Using a Compressed Barcode Space , 2020 .

[47]  Yu Deng,et al.  Coronavirus Disease 2019 (COVID-19): What we know? , 2020 .

[48]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2019, bioRxiv.

[49]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[50]  K. Yuen,et al.  Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3‐dependent ubiquitination of ASC , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  Fabian J Theis,et al.  A cellular census of human lungs identifies novel cell states in health and in asthma , 2019, Nature Medicine.

[52]  Sven Nahnsen,et al.  nf-core: Community curated bioinformatics pipelines , 2019, bioRxiv.

[53]  Kathryn A. O’Donnell,et al.  Transmembrane Protease TMPRSS11B Promotes Lung Cancer Growth by Enhancing Lactate Export and Glycolytic Metabolism , 2018, Cell reports.

[54]  Karthik Gangavarapu,et al.  An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar , 2018, Genome Biology.

[55]  Nancy R. Zhang,et al.  Bulk tissue cell type deconvolution with multi-subject single-cell expression reference , 2018, Nature Communications.

[56]  Donna M. Muzny,et al.  xAtlas: scalable small variant calling across heterogeneous next-generation sequencing experiments , 2018, bioRxiv.

[57]  Judith A. Blake,et al.  Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse , 2017, Nucleic Acids Res..

[58]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[59]  Richard A Neher,et al.  TreeTime: Maximum-likelihood phylodynamic analysis , 2017, bioRxiv.

[60]  Yuelong Shu,et al.  GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[61]  L. Sechi,et al.  Mycobacterium avium subsp. paratuberculosis and associated risk factors for inflammatory bowel disease in Iranian patients , 2017, Gut Pathogens.

[62]  Stefan Elbe,et al.  Data, disease and diplomacy: GISAID's innovative contribution to global health , 2017, Global challenges.

[63]  F. Balloux,et al.  Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast , 2016, Nature Communications.

[64]  Samuel S. Shepard,et al.  Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler , 2016, BMC Genomics.

[65]  Alexey Sergushichev,et al.  An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation , 2016 .

[66]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[67]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[68]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[69]  Holger Klein,et al.  dupRadar: a Bioconductor package for the assessment of PCR artifacts in RNA-Seq data , 2016, BMC Bioinformatics.

[70]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[71]  Ana Conesa,et al.  Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data , 2015, Bioinform..

[72]  Andrew Rambaut,et al.  Real-time digital pathogen surveillance — the time is now , 2015, Genome Biology.

[73]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[74]  Thomas C Evans,et al.  Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. , 2015, BioTechniques.

[75]  Ryan M. Layer,et al.  SpeedSeq: Ultra-fast personal genome analysis and interpretation , 2014, Nature Methods.

[76]  Krishna Shankara Narayanan,et al.  Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression , 2014, Virus Research.

[77]  Xing Li,et al.  Quality control of RNA-seq experiments. , 2015, Methods in molecular biology.

[78]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[79]  J. Blair,et al.  Performance of Rapid Influenza Diagnostic Testing in Outbreak Settings , 2014, Journal of Clinical Microbiology.

[80]  M. Zaharia,et al.  A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples , 2014, Genome Research.

[81]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[82]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[83]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[84]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[85]  Thomas Zichner,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[86]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[87]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[88]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[89]  A. García-Sastre,et al.  HERC6 Is the Main E3 Ligase for Global ISG15 Conjugation in Mouse Cells , 2012, PloS one.

[90]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[91]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[92]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[93]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[94]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[95]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[96]  K. Shimamoto,et al.  Olmesartan Is an Angiotensin II Receptor Blocker with an Inhibitory Effect on Angiotensin-Converting Enzyme , 2006, Hypertension Research.

[97]  J. Phillips,et al.  Biosynthesis of heme in mammals. , 2006, Biochimica et biophysica acta.

[98]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Palva,et al.  Analysis of the Fecal Microbiota of Irritable Bowel Syndrome Patients and Healthy Controls with Real-Time PCR , 2005, The American Journal of Gastroenterology.

[100]  Chris Sander,et al.  MView: a web-compatible database search or multiple alignment viewer , 1998, Bioinform..

[101]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .