The union-closed sets conjecture almost holds for almost all random bipartite graphs

Frankls union-closed sets conjecture states that in every finite union-closed family of sets, not all empty, there is an element in the ground set contained in at least half of the sets. The conjecture has an equivalent formulation in terms of graphs: In every bipartite graph with least one edge, both colour classes contain a vertex belonging to at most half of the maximal stable sets.We prove that, for every fixed edge-probability, almost every random bipartite graph almost satisfies Frankls conjecture.

[1]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[2]  Jürgen Reinhold Frankl's Conjecture Is True for Lower Semimodular Lattices , 2000, Graphs Comb..

[3]  Petar Markovic,et al.  The 11-element case of Frankl's conjecture , 2008, Electron. J. Comb..

[4]  Yuan Zhou Introduction to Coding Theory , 2010 .

[5]  Béla Bollobás,et al.  Random Graphs: Preface to the Second Edition , 2001 .

[6]  Gábor Czédli,et al.  Frankl's Conjecture for Large Semimodular and Planar Semimodular , 2008 .

[7]  Henning Bruhn,et al.  The graph formulation of the union-closed sets conjecture , 2015, Eur. J. Comb..

[8]  Robert Morris FC-families and improved bounds for Frankl's conjecture , 2006, Eur. J. Comb..

[9]  Giovanni Lo Faro A note on the union-closed sets conjecture , 1994 .

[10]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[11]  Béla Bollobás,et al.  Random Graphs , 1985 .

[12]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[13]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[14]  Yining Hu,et al.  On the union-closed sets conjecture , 2017, Discret. Math..

[15]  Takashi Nishimura,et al.  Around Frankl Conjecture , 1996 .

[16]  Jamie Simpson,et al.  A note on the union-closed sets conjecture , 2010, Australas. J Comb..

[17]  Reinhard Diestel,et al.  Graph Theory, 4th Edition , 2012, Graduate texts in mathematics.

[18]  Bjorn Poonen Union-Closed Families , 1992, J. Comb. Theory, Ser. A.

[19]  I. Rival Graphs and Order , 1985 .

[20]  Gábor Czédli On averaging Frankl's conjecture for large union-closed-sets , 2009, J. Comb. Theory, Ser. A.

[21]  Henning Bruhn,et al.  The Journey of the Union-Closed Sets Conjecture , 2013, Graphs Comb..

[22]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[23]  Harald Niederreiter,et al.  Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..

[24]  Theresa P. Vaughan,et al.  Families Implying the Frankl Conjecture , 2002, Eur. J. Comb..

[25]  David Reimer,et al.  An Average Set Size Theorem , 2003, Combinatorics, Probability and Computing.

[26]  Miklós Maróti,et al.  On the Scope of Averaging for Frankl’s Conjecture , 2009, Order.

[27]  Béla Bollobás,et al.  Union-closed families of sets , 2013, J. Comb. Theory, Ser. A.

[28]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[29]  Martin Grötschel,et al.  Handbook of combinatorics (vol. 1) , 1996 .