The union-closed sets conjecture almost holds for almost all random bipartite graphs
暂无分享,去创建一个
[1] R. Graham,et al. Handbook of Combinatorics , 1995 .
[2] Jürgen Reinhold. Frankl's Conjecture Is True for Lower Semimodular Lattices , 2000, Graphs Comb..
[3] Petar Markovic,et al. The 11-element case of Frankl's conjecture , 2008, Electron. J. Comb..
[4] Yuan Zhou. Introduction to Coding Theory , 2010 .
[5] Béla Bollobás,et al. Random Graphs: Preface to the Second Edition , 2001 .
[6] Gábor Czédli,et al. Frankl's Conjecture for Large Semimodular and Planar Semimodular , 2008 .
[7] Henning Bruhn,et al. The graph formulation of the union-closed sets conjecture , 2015, Eur. J. Comb..
[8] Robert Morris. FC-families and improved bounds for Frankl's conjecture , 2006, Eur. J. Comb..
[9] Giovanni Lo Faro. A note on the union-closed sets conjecture , 1994 .
[10] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[11] Béla Bollobás,et al. Random Graphs , 1985 .
[12] J. H. van Lint,et al. Introduction to Coding Theory , 1982 .
[13] J. H. van Lint,et al. Introduction to Coding Theory , 1982 .
[14] Yining Hu,et al. On the union-closed sets conjecture , 2017, Discret. Math..
[15] Takashi Nishimura,et al. Around Frankl Conjecture , 1996 .
[16] Jamie Simpson,et al. A note on the union-closed sets conjecture , 2010, Australas. J Comb..
[17] Reinhard Diestel,et al. Graph Theory, 4th Edition , 2012, Graduate texts in mathematics.
[18] Bjorn Poonen. Union-Closed Families , 1992, J. Comb. Theory, Ser. A.
[19] I. Rival. Graphs and Order , 1985 .
[20] Gábor Czédli. On averaging Frankl's conjecture for large union-closed-sets , 2009, J. Comb. Theory, Ser. A.
[21] Henning Bruhn,et al. The Journey of the Union-Closed Sets Conjecture , 2013, Graphs Comb..
[22] Reinhard Diestel,et al. Graph Theory , 1997 .
[23] Harald Niederreiter,et al. Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..
[24] Theresa P. Vaughan,et al. Families Implying the Frankl Conjecture , 2002, Eur. J. Comb..
[25] David Reimer,et al. An Average Set Size Theorem , 2003, Combinatorics, Probability and Computing.
[26] Miklós Maróti,et al. On the Scope of Averaging for Frankl’s Conjecture , 2009, Order.
[27] Béla Bollobás,et al. Union-closed families of sets , 2013, J. Comb. Theory, Ser. A.
[28] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[29] Martin Grötschel,et al. Handbook of combinatorics (vol. 1) , 1996 .