Strong chiral optical force for small chiral molecules based on electric-dipole interactions, inspired by the asymmetrical hydrozoan $\textit{Velella velella}$

Drawing inspiration from a remarkable chiral force found in nature, we show that a static electric field combined with an optical lin$\perp$lin polarization standing wave can exert a chiral optical force on a small chiral molecule that is several orders of magnitude stronger than other chiral optical forces proposed to date, being based on leading electric-dipole interactions rather than relying on weak magnetic-dipole and electric-quadrupole interactions. Our chiral optical force applies to most small chiral molecules, including isotopically chiral molecules, and does not require a specific energy-level structure. Potential applications range from chiral molecular matter-wave interferometry for precision metrology and tests of fundamental physics to the resolution of enantiomers for use in chemistry and biology.

[1]  Binghai Yan,et al.  Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking , 2022, Nature Photonics.

[2]  R. Bennett,et al.  Quantum phases of bosonic chiral molecules in helicity lattices , 2022, Physical Review A.

[3]  C. Genet Chiral Light–Chiral Matter Interactions: an Optical Force Perspective , 2022, ACS Photonics.

[4]  K. A. Forbes,et al.  Enantioselective optical gradient forces using 3D structured vortex light , 2021, Optics Communications.

[5]  Liang Fang,et al.  Optical Trapping Separation of Chiral Nanoparticles by Subwavelength Slot Waveguides , 2021, Physical Review Letters.

[6]  F. Vollmer,et al.  Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. , 2021, Optics express.

[7]  B. Stickler,et al.  Enantiomer Superpositions from Matter-Wave Interference of Chiral Molecules , 2021, Physical Review X.

[8]  S. Barnett,et al.  Mechanical chiral resolution. , 2019, Soft matter.

[9]  J. Leng,et al.  Optical Enantioseparation of Racemic Emulsions of Chiral Microparticles , 2019, Physical Review Applied.

[10]  E. Brasselet,et al.  Chiral Optical Stern-Gerlach Newtonian Experiment. , 2019, Physical review letters.

[11]  Amr A E Saleh,et al.  Nanoscopic control and quantification of enantioselective optical forces , 2017, Nature nanotechnology.

[12]  A. Harvey,et al.  Photoexcitation circular dichroism in chiral molecules , 2016, Nature Physics.

[13]  I. Rukhlenko,et al.  Completely Chiral Optical Force for Enantioseparation , 2016, Scientific Reports.

[14]  D. S. Bradshaw,et al.  Laser optical separation of chiral molecules. , 2015, Optics letters.

[15]  Etienne Brasselet,et al.  Helicity-dependent three-dimensional optical trapping of chiral microparticles , 2014, Nature Communications.

[16]  S. Barnett,et al.  Diffraction gratings for chiral molecules and their applications. , 2014, The journal of physical chemistry. A.

[17]  Etienne Brasselet,et al.  Optofluidic sorting of material chirality by chiral light , 2014, Nature Communications.

[18]  A. Mazzulla,et al.  Polarization-dependent optomechanics mediated by chiral microresonators , 2014, Nature Communications.

[19]  T. Crawford,et al.  Large solvation effect in the optical rotatory dispersion of norbornenone. , 2014, Angewandte Chemie.

[20]  Stephen M. Barnett,et al.  Discriminatory optical force for chiral molecules , 2014 .

[21]  M. Grieser,et al.  Imaging the Absolute Configuration of a Chiral Epoxide in the Gas Phase , 2013, Science.

[22]  E. Brasselet,et al.  Spin controlled optical radiation pressure , 2013, 2013 International Conference on Advanced Optoelectronics and Lasers (CAOL 2013).

[23]  Allan S. Johnson,et al.  Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging , 2013, Science.

[24]  Thomas W. Ebbesen,et al.  Mechanical separation of chiral dipoles by chiral light , 2013, 1306.3708.

[25]  D. Patterson,et al.  Enantiomer-specific detection of chiral molecules via microwave spectroscopy , 2013, Nature.

[26]  Karen Volke-Sepúlveda,et al.  Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers. , 2013, Lab on a chip.

[27]  H. A. Lorentz Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern , 2013 .

[28]  E. Hirota Triple resonance for a three-level system of a chiral molecule , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[29]  A. Mazzulla,et al.  Chiral Self‐Assembled Solid Microspheres: A Novel Multifunctional Microphotonic Device , 2011, Advanced materials.

[30]  S. Barnett,et al.  Momentum Exchange between Light and a Single Atom: Abraham or Minkowski? , 2008, Physical review letters.

[31]  Y. Achiba,et al.  Direct observation of “dynamic” chirality by Coulomb explosion imaging , 2001 .

[32]  U. Heinzmann,et al.  Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. , 2001, Physical review letters.

[33]  Jerry Kucirka,et al.  On the deracemization of a chiral molecular beam by interaction with circularly polarized light , 1996 .

[34]  Laurence D. Barron,et al.  Rayleigh and Raman optical activity from chiral surfaces , 1994 .

[35]  Yee,et al.  Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers. , 1994, Physical review. B, Condensed matter.

[36]  Janice M. Hicks,et al.  Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study , 1993 .

[37]  C. cohen-tannoudji,et al.  Laser cooling below the Doppler limit by polarization gradients: simple theoretical models , 1989 .

[38]  L. Barron,et al.  Molecular light scattering and optical activity. Cambridge University Press 1983, xv + 408pp., £37.50 , 1983 .

[39]  B. Ritchie Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions , 1976 .

[40]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[41]  K. Wecht,et al.  Coherent Optical Mixing in Optically Active Liquids , 1966 .

[42]  J. Giordmaine,et al.  Nonlinear Optical Properties of Liquids , 1965 .

[43]  S. Golden,et al.  The Interaction of Nuclear Electric Quadrupole Moments with Molecular Rotation in Asymmetric Top Molecules. II. Approximate Methods for First-Order Coupling , 1949 .

[44]  S. Wang,et al.  On the Asymmetrical Top in Quantum Mechanics , 1929 .