Optical vortex beam direct-writing photolithography

By using a focused unit-order vortex beam generated by a spiral phase plate, it is possible to acquire ~100 nm structures in direct-writing photolithography. This novel method is simple and inexpensive and can quickly fabricate nanometer-size dams or trenches that may have applications in nanoscale waveguides or micro- and nanofluidics. To overcome the defect of a small exposure dose tolerance in this method, which may lead to poor quality of the direct-writing lines, an alternative solution using a fractional-order vortex beam is proposed.

[1]  S. Khonina,et al.  Diffraction of a plane, finite-radius wave by a spiral phase plate. , 2006, Optics letters.

[2]  Xiaojun Xu,et al.  Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator , 2013 .

[3]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .

[4]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[5]  Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals. , 2007, Optics express.

[6]  Rajesh Menon,et al.  Absorbance-modulation optical lithography. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  A. A. Almazov,et al.  Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Zhengping Hong,et al.  Optical sorting using an array of optical vortices with fractional topological charge , 2010 .

[9]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[10]  Emil Wolf,et al.  Principles of Optics: Elements of the theory of diffraction , 1999 .

[11]  C. David,et al.  Generation of extreme ultraviolet vortex beams using computer generated holograms. , 2011, Optics letters.

[12]  Myun-Sik Kim,et al.  Low-NA focused vortex beam lithography for below 100-nm feature size at 405 nm illumination , 2013, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[13]  Carolina Rickenstorff-Parrao,et al.  Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. , 2013, Optics letters.

[14]  Pravin Vaity,et al.  Making an optical vortex and its copies using a single spatial light modulator , 2011 .

[15]  J. Bai,et al.  Focused laser lithographic system with sub-wavelength resolution based on vortex laser induced opacity of photochromic material. , 2014, Optics letters.

[16]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[17]  Shutian Liu,et al.  Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses , 2007 .

[18]  S. Lipson,et al.  Adjustable spiral phase plate. , 2004, Applied optics.

[19]  H. Niu,et al.  Fractional optical vortex beam induced rotation of particles. , 2005, Optics express.

[20]  Bert Hecht,et al.  Impedance matching and emission properties of nanoantennas in an optical nanocircuit. , 2009, Nano letters.

[21]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[22]  P. Shum,et al.  Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate. , 2005, Optics express.

[23]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[24]  Rokas Drevinskas,et al.  Single beam optical vortex tweezers with tunable orbital angular momentum , 2014 .

[25]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[26]  Peter J. Schemmel,et al.  Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. , 2014, Optics express.

[27]  D. Grier A revolution in optical manipulation , 2003, Nature.