Puintuplication of Room squares

Given a strong starter for a groupG of ordern, where 3 does not dividen, a construction is given for a strong starter for the direct sum ofG and the integers modulo 5. In particular, this gives a Room square of side 5p for all non-Fermat primesp.

[1]  R. Mullin,et al.  An Existence Theorem for Room Squares* , 1969, Canadian Mathematical Bulletin.

[2]  W. D. Wallis,et al.  On the existence of Room squares of order 4n , 1971 .

[3]  T. G. Room 2569. A new type of magic square , 1955, The Mathematical Gazette.

[4]  R. Mullin,et al.  Construction of Room Squares , 1968 .

[5]  R. G. Stanton,et al.  A recursive construction for Room designs , 1970 .

[6]  R. Mullin,et al.  Room quasigroups and fermat primes , 1972 .

[7]  W. Wallis Duplication of Room squares , 1972, Journal of the Australian Mathematical Society.