Controlling spontaneous emission with plasmonic optical patch antennas.

We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending on the antenna geometry. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.

[1]  L. Novotný,et al.  Antennas for light , 2011 .

[2]  H. Eghlidi,et al.  A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency , 2010, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[3]  Harald Giessen,et al.  Directing Light Emission from Quantum Dots , 2010, Science.

[4]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[5]  A. Maître,et al.  Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. , 2010, Optics express.

[6]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[7]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[8]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[9]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[10]  B. Dubertret,et al.  Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking. , 2009, Physical review letters.

[11]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[12]  J. White,et al.  Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures , 2008, 0808.1466.

[13]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[14]  A Lemaître,et al.  Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. , 2008, Physical review letters.

[15]  H Germany,et al.  Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. , 2008, Physical review letters.

[16]  Pierre Benech,et al.  Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  P Lalanne,et al.  Theoretical and computational concepts for periodic optical waveguides. , 2007, Optics express.

[18]  Martin Winger,et al.  Photon antibunching in the photoluminescence spectra of a single carbon nanotube. , 2007, Physical review letters.

[19]  B. Hecht,et al.  Principles of Nano-Optics: Theoretical foundations , 2006 .

[20]  V. Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[21]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[22]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[23]  Dirk Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal , 2005, SPIE Optics East.

[24]  Peter Michler,et al.  Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure , 2001 .

[25]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[26]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[27]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[28]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[29]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[30]  G. Solomon,et al.  Available online at www.sciencedirect.com , 2000 .

[31]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .