Toward the Unambiguous Identification of Supermassive Binary Black Holes through Bayesian Inference

Supermassive binary black holes at subparsec orbital separations have yet to be discovered, with the possible exception of blazar OJ 287. In parallel to the global hunt for nanohertz gravitational waves from supermassive binaries using pulsar timing arrays, there has been a growing sample of candidates reported from electromagnetic surveys, particularly searches for periodic variations in the optical light curves of quasars. However, the periodicity search is prone to false positives from quasar red noise and quasiperiodic oscillations from the accretion disk of a single supermassive black hole, especially when the data span fewer than a few signal cycles. We present a Bayesian method for the detection of quasar (quasi)periodicity in the presence of red noise. We apply this method to the binary candidate PG 1302−102 and show that (a) there is very strong support (Bayes factor >106) for quasiperiodicity and (b) the data slightly favor a quasiperiodic oscillation over a sinusoidal signal, which we interpret as modest evidence against the binary black hole hypothesis. We also find that the prevalent damped random walk red-noise model is disfavored with more than 99.9% credibility. Finally, we outline future work that may enable the unambiguous identification of supermassive binary black holes.

[1]  A. Gopakumar,et al.  Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287 , 2020, The Astrophysical Journal.

[2]  D. Lai,et al.  Circumbinary Accretion from Finite and Infinite Disks , 2019, The Astrophysical Journal.

[3]  M. Graham,et al.  Testing the relativistic Doppler boost hypothesis for the binary candidate quasar PG1302-102 with multiband Swift data , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  Xin Liu,et al.  Spectral energy distributions of candidate periodically variable quasars: testing the binary black hole hypothesis , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  J. Greene,et al.  Discovery of a Close-separation Binary Quasar at the Heart of a z ∼ 0.2 Merging Galaxy and Its Implications for Low-frequency Gravitational Waves , 2019, The Astrophysical Journal.

[8]  A. Gopakumar,et al.  The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine , 2019, Universe.

[9]  T Jayasinghe,et al.  The ASAS-SN catalogue of variable stars III: variables in the southern TESS continuous viewing zone , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.

[11]  L. Popović,et al.  The Optical Variability of Supermassive Black Hole Binary Candidate PG 1302–102: Periodicity and Perturbation in the Light Curve , 2018, The Astrophysical Journal.

[12]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[13]  C. Conselice,et al.  Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  Colm Talbot,et al.  An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models , 2018, Publications of the Astronomical Society of Australia.

[15]  Edward Higson,et al.  Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation , 2017, Statistics and Computing.

[16]  F. G. Pinilla,et al.  Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters , 2018, The Astrophysical Journal.

[17]  I. Pashchenko,et al.  OJ287: deciphering the ‘Rosetta stone of blazars’ , 2018 .

[18]  E. Thrane,et al.  The minimum and maximum gravitational-wave background from supermassive binary black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  R. Wagoner,et al.  Evidence for an Optical Low-frequency Quasi-periodic Oscillation in the Kepler Light Curve of an Active Galaxy , 2018, The Astrophysical Journal.

[20]  S. Gezari,et al.  Did ASAS-SN Kill the Supermassive Black Hole Binary Candidate PG1302-102? , 2018, 1803.05448.

[21]  P. Amaro-Seoane,et al.  Accretion of clumpy cold gas onto massive black hole binaries: a possible fast route to binary coalescence , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  R. Perna,et al.  Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem , 2017, 1709.06501.

[23]  S. Gezari,et al.  Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey , 2017, Proceedings of the International Astronomical Union.

[24]  D. Merritt,et al.  A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674 , 2017, Nature Astronomy.

[25]  Junxian Wang,et al.  How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency? , 2017, 1709.05271.

[26]  R. Romani,et al.  Constraining the Orbit of the Supermassive Black Hole Binary 0402+379 , 2017, 1705.08556.

[27]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[28]  L. Sampson,et al.  Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays. , 2016, Physical review letters.

[29]  University of Hawaii at Manoa,et al.  A SYSTEMATIC SEARCH FOR PERIODICALLY VARYING QUASARS IN PAN-STARRS1: AN EXTENDED BASELINE TEST IN MEDIUM DEEP SURVEY FIELD MD09 , 2016, 1609.09503.

[30]  P. Uttley,et al.  False periodicities in quasar time-domain surveys , 2016, 1606.02620.

[31]  M. Graham,et al.  A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates , 2016, 1604.01020.

[32]  A. Just,et al.  SWIFT COALESCENCE OF SUPERMASSIVE BLACK HOLES IN COSMOLOGICAL MERGERS OF MASSIVE GALAXIES , 2016, 1604.00015.

[33]  S. Motta Quasi periodic oscillations in black hole binaries , 2016, 1603.07885.

[34]  J. P. Moore,et al.  PRIMARY BLACK HOLE SPIN IN OJ 287 AS DETERMINED BY THE GENERAL RELATIVITY CENTENARY FLARE , 2016, 1603.04171.

[35]  L. Ho,et al.  SPECTROSCOPIC INDICATION OF A CENTI-PARSEC SUPERMASSIVE BLACK HOLE BINARY IN THE GALACTIC CENTER OF NGC 5548 , 2016, 1602.05005.

[36]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[37]  P. Lasky,et al.  Detectability of Gravitational Waves from High-Redshift Binaries. , 2015, Physical review letters.

[38]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[39]  Samuel Hinton,et al.  ChainConsumer , 2016, J. Open Source Softw..

[40]  Linhua Jiang,et al.  SDSS J0159+0105: A RADIO-QUIET QUASAR WITH A CENTI-PARSEC SUPERMASSIVE BLACK HOLE BINARY CANDIDATE , 2015, 1512.08730.

[41]  T. J. W. Lazio,et al.  ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.

[42]  D. Schiminovich,et al.  Relativistic boost as the cause of periodicity in a massive black-hole binary candidate , 2015, Nature.

[43]  Ciro Donalek,et al.  A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey , 2015, 1507.07603.

[44]  S. Gezari,et al.  A PERIODICALLY VARYING LUMINOUS QUASAR AT z = 2 FROM THE PAN-STARRS1 MEDIUM DEEP SURVEY: A CANDIDATE SUPERMASSIVE BLACK HOLE BINARY IN THE GRAVITATIONAL WAVE-DRIVEN REGIME , 2015, Proceedings of the International Astronomical Union.

[45]  S. Djorgovski,et al.  A possible close supermassive black-hole binary in a quasar with optical periodicity , 2015, Nature.

[46]  M. Vallisneri,et al.  Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.

[47]  M. Bailes,et al.  An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set , 2014, 1408.5129.

[48]  M. Colpi Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence , 2014, 1407.3102.

[49]  Brandon C. Kelly,et al.  FLEXIBLE AND SCALABLE METHODS FOR QUANTIFYING STOCHASTIC VARIABILITY IN THE ERA OF MASSIVE TIME-DOMAIN ASTRONOMICAL DATA SETS , 2014, 1402.5978.

[50]  P. Duffell,et al.  BINARY BLACK HOLE ACCRETION FROM A CIRCUMBINARY DISK: GAS DYNAMICS INSIDE THE CENTRAL CAVITY , 2013, 1310.0492.

[51]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[52]  Dae-Won Kim,et al.  Assessment of stochastic and deterministic models of 6304 quasar lightcurves from SDSS Stripe 82 , 2013, 1304.2863.

[53]  M. Hobson,et al.  Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.

[54]  A. I. Shapovalova,et al.  THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE , 2012, 1209.4524.

[55]  T. Boroson,et al.  A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES , 2012, 1509.02575.

[56]  K. Gultekin,et al.  OBSERVABLE CONSEQUENCES OF MERGER-DRIVEN GAPS AND HOLES IN BLACK HOLE ACCRETION DISKS , 2012, 1207.0296.

[57]  C. Kochanek,et al.  IS QUASAR OPTICAL VARIABILITY A DAMPED RANDOM WALK? , 2012, 1202.3783.

[58]  J. S. Stuart,et al.  EXPLORING THE VARIABLE SKY WITH LINEAR. I. PHOTOMETRIC RECALIBRATION WITH THE SLOAN DIGITAL SKY SURVEY , 2011, 1109.5227.

[59]  T. Boroson,et al.  A Large Systematic Search for Recoiling and Close Supermassive Binary Black Holes , 2011, 1106.2952.

[60]  E. Ros,et al.  A possible jet precession in the periodic quasar B0605-085 , 2010, 1007.0989.

[61]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[62]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[63]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[64]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[65]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[66]  M. Kidger,et al.  A massive binary black-hole system in OJ 287 and a test of general relativity , 2008, Nature.

[67]  Tony O’Hagan Bayes factors , 2006 .

[68]  National Radio Astronomy Observatory,et al.  A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.

[69]  Qingjuan Yu Evolution of massive binary black holes , 2001, astro-ph/0109530.

[70]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[71]  Z. Abraham,et al.  The Precessing Jet in 3C 279 , 1998 .

[72]  A. Sillanpää,et al.  OJ 287 - Binary pair of supermassive black holes , 1988 .

[73]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.