Improved Switching Voltage Variation of Cu Atom Switch for Nonvolatile Programmable Logic

Switching voltage variation of a Cu atom switch (AS) is improved to δ = 9.5 % by adjusting the buffer oxidation state and electrode surface roughness. The complementary AS (CAS) connects two Cu lines at each edge and is composed of a dual-layered electrolyte of oxidized Ti buffer metal/polymer solid electrolyte. A sufficiently oxidized Ti buffer layer prevents both Cu oxidation and Ti diffusion during the fabrication processes, reducing the OFF-state leakage current and making the ON/OFF current ratio high. A dry cleaning process reduces the Cu electrode surface roughness, tightening the set voltage distribution and enabling the use of a low programming voltage, 1.8 V. A large-scale crossbar switch block consisting of CASs has been operated by the improved switches.

[1]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[2]  G. Groeseneken,et al.  Modeling RRAM set/reset statistics resulting in guidelines for optimized operation , 2013, 2013 Symposium on VLSI Technology.

[3]  R. Snyders,et al.  XPS study of TiOx thin films prepared by d.c. magnetron sputtering in Ar–O2 gas mixtures , 2000 .

[4]  Masato Motomura,et al.  Programmable cell array using rewritable solid-electrolyte switch integrated in 90nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Y. Hirose,et al.  Backscattering measurements on Ag photodoping effect in As2S3 glass , 1976 .

[7]  N. Iguchi,et al.  Nonvolatile 32×32 crossbar atom switch block integrated on a 65-nm CMOS platform , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[8]  N. Banno,et al.  Improved reliability and switching performance of atom switch by using ternary Cu-alloy and RuTa electrodes , 2012, 2012 International Electron Devices Meeting.

[9]  Toshitsugu Sakamoto,et al.  Improved Off-State Reliability of Nonvolatile Resistive Switch With Low Programming Voltage , 2012, IEEE Transactions on Electron Devices.

[10]  A. El Gamal,et al.  Architecture of field-programmable gate arrays , 1993, Proc. IEEE.

[11]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[12]  Eby G. Friedman,et al.  2T-1R STT-MRAM memory cells for enhanced on/off current ratio , 2014, Microelectron. J..

[13]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[14]  T. Sakamoto,et al.  Polymer Solid-Electrolyte Switch Embedded on CMOS for Nonvolatile Crossbar Switch , 2011, IEEE Transactions on Electron Devices.

[15]  Y. Nara,et al.  Thermal Degradation of HfSiON Dielectrics Caused by TiN Gate Electrodes and Its Impact on Electrical Properties , 2005 .

[16]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[17]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[18]  Zheng Wang,et al.  Nonvolatile SRAM Cell , 2006, 2006 International Electron Devices Meeting.

[19]  H. L. Lung,et al.  A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTe z phase change material , 2012, 2012 International Electron Devices Meeting.

[20]  H. Hada,et al.  Nonvolatile Crossbar Switch Using $\hbox{TiO}_{x}/ \hbox{TaSiO}_{y}$ Solid Electrolyte , 2010, IEEE Transactions on Electron Devices.

[21]  E. Hamdy,et al.  Antifuse field programmable gate arrays , 1993, Proc. IEEE.