Atomic-level tunnel engineering of todorokite MnO2 for precise evaluation of lithium storage mechanisms by in situ transmission electron microscopy

[1]  Brandon R. Sutherland,et al.  Charging up Stationary Energy Storage , 2019, Joule.

[2]  G. Ceder,et al.  Revealing and Rationalizing the Rich Polytypism of Todorokite MnO2. , 2018, Journal of the American Chemical Society.

[3]  Karren L. More,et al.  Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization , 2018 .

[4]  G. Rubloff,et al.  Investigation of the water-stimulated Mg2+ insertion mechanism in an electrodeposited MnO2 cathode using X-ray photoelectron spectroscopy. , 2018, Physical chemistry chemical physics : PCCP.

[5]  A. Marschilok,et al.  Lithiation Mechanism of Tunnel‐Structured MnO2 Electrode Investigated by In Situ Transmission Electron Microscopy , 2017, Advanced materials.

[6]  M. Hybertsen,et al.  Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods , 2017, Nature Communications.

[7]  Daniel C. Hannah,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[8]  Pengyi Zhang,et al.  Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: Effects of cerium modification , 2017 .

[9]  Yu Ding,et al.  In Situ Reactive Synthesis of Polypyrrole-MnO2 Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium-Sulfur Battery. , 2016, Nano letters.

[10]  H. Xin,et al.  Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy , 2016 .

[11]  Zhipan Liu,et al.  Reaction Network of Layer-to-Tunnel Transition of MnO2. , 2016, Journal of the American Chemical Society.

[12]  Bryan W. Byles,et al.  Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries , 2015 .

[13]  Alexander B. Brady,et al.  Structural Defects of Silver Hollandite, Ag(x)Mn8O(y), Nanorods: Dramatic Impact on Electrochemistry. , 2015, ACS nano.

[14]  Jun Lu,et al.  Asynchronous Crystal Cell Expansion during Lithiation of K(+)-Stabilized α-MnO2. , 2015, Nano letters.

[15]  A. Hintennach,et al.  In situ formation of α-MnO2 nanowires as catalyst for sodium-air batteries , 2015 .

[16]  C. Peacock,et al.  Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments , 2014 .

[17]  Xin Li,et al.  Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. , 2014, Nature materials.

[18]  Qingfeng Sun,et al.  Multifunctional free-standing membrane from the self-assembly of ultralong MnO2 nanowires. , 2013, ACS applied materials & interfaces.

[19]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[20]  David M. Robinson,et al.  Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. , 2013, Journal of the American Chemical Society.

[21]  E. Kan,et al.  First-principles investigations on the magnetic structure of α-NaMnO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  M. Bazant Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[23]  C. Ling,et al.  First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties , 2012 .

[24]  Yadong Li,et al.  α-MnO2 nanotubes: high surface area and enhanced lithium battery properties. , 2012, Chemical communications.

[25]  H. Tan,et al.  Oxidation state and chemical shift investigation in transition metal oxides by EELS , 2012 .

[26]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[27]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[28]  W. Mader,et al.  Oxidation states of Mn and Fe in various compound oxide systems. , 2006, Micron.

[29]  H. Yashiro,et al.  Synthesis of metal-doped todorokite-type MnO2 and its cathode characteristics for rechargeable lithium batteries , 2005 .

[30]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[31]  Yong Yang,et al.  Performance and characterization of lithium-manganese-oxide cathode material with large tunnel structure for lithium batteries , 1999 .

[32]  L. Nazar,et al.  Todorokite as a Li Insertion Cathode Comparison of a Large Tunnel Framework “ ” Structure with Its Related Layered Structures , 1998 .

[33]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Q. Feng,et al.  Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase , 1995 .

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  Colliex,et al.  Electron-energy-loss core-edge structures in manganese oxides. , 1993, Physical review. B, Condensed matter.

[38]  S. Suib,et al.  Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications , 1993, Science.

[39]  Pearson,et al.  White lines and d-electron occupancies for the 3d and 4d transition metals. , 1993, Physical review. B, Condensed matter.

[40]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[41]  O. Krivanek,et al.  Elnes of 3d transition-metal oxides. II, Variations with oxidation state and crystal structure , 1990 .

[42]  D. Bish,et al.  Rietveld refinement of the todorokite structure , 1988 .

[43]  J. Ostwald Some observations on the chemical composition of todorokite , 1986, Mineralogical Magazine.

[44]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[45]  A. Marschilok,et al.  Tunnel Structured α-MnO2with Different Tunnel Cations (H+, K+, Ag+) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry , 2017 .

[46]  Xuanxuan Bi,et al.  Dynamic study of (De)sodiation in alpha-MnO 2 nanowires , 2016 .

[47]  L. Garvie,et al.  High-resolution parallel electron energy-loss spectroscopy of Mn L2,3-edges in inorganic manganese compounds , 1994 .