Challenges for biohydrogen production via direct lignocellulose fermentation

Abstract Direct cellulose fermentation by cellulolytic anaerobic bacteria offers potential to generate renewable hydrogen (H 2 ) from inexpensive “waste” cellulosic feedstocks. The rates and yields of H 2 production via direct cellulose fermentation are low and must be increased significantly if this technology is to become a viable method for generating usable H 2 . A much more comprehensive understanding of the relationships between gene and gene product expression, end-product synthesis patterns, and the factors that regulate carbon and electron balance, within the context of the bioreactor conditions must be achieved if we are to improve molar yields of H 2 during cellulose fermentation. Strategies to increase yields of H 2 production from cellulose include manipulation of carbon and electron flow via end-product inhibition (metabolic shift), metabolic engineering at the genetic level, synergistic co-cultures, and bioprocess engineering and bioreactor designs that maintain a neutral pH during fermentation and ensure rapid removal of H 2 and CO 2 from the aqueous phase.

[1]  Alfons J. M. Stams,et al.  Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii , 2002 .

[2]  John R. Benemann,et al.  Biological hydrogen production , 1995 .

[3]  Michael Modigell,et al.  Fuel gases from organic wastes using membrane bioreactors , 2006 .

[4]  P. Claassen,et al.  Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus , 2007, Applied Microbiology and Biotechnology.

[5]  Y. Mori Characterization of a Symbiotic Coculture of Clostridium thermohydrosulfuricum YM3 and Clostridium thermocellum YM4 , 1990, Applied and environmental microbiology.

[6]  D. Saul,et al.  Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria , 1999 .

[7]  R. Thauer,et al.  Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur-protein. , 1978, European journal of biochemistry.

[8]  R. Sparling,et al.  Continuous hydrogen production during fermentation of α‐cellulose by the thermophillic bacterium Clostridium thermocellum , 2009, Biotechnology and bioengineering.

[9]  Raphael Lamed,et al.  The Cellulosome of Clostridium thermocellum , 1988 .

[10]  L. Ljungdahl,et al.  The cellulosome: the exocellular organelle of Clostridium. , 1993, Annual review of microbiology.

[11]  G. Naja,et al.  Comparative testing of tangential microfiltration for microbial cultures , 2006, Biotechnology and bioengineering.

[12]  A. Demain,et al.  Regulation of Cellulase Formation in Clostridium thermocellum , 1985 .

[13]  M. Desvaux,et al.  Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. , 2001, Microbiology.

[14]  Richard Sparling,et al.  Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405 , 2006, Applied Microbiology and Biotechnology.

[15]  G. Seenayya,et al.  Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum , 1997, Biotechnology Letters.

[16]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[17]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[18]  August Böck,et al.  Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenylase components , 1990 .

[19]  L. Lynd,et al.  Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell‐free broth from Clostridium thermocellum , 1987, Biotechnology and bioengineering.

[20]  Yung-Chuan Liu,et al.  Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1 , 2007 .

[21]  M. Cheryan,et al.  Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor , 1990 .

[22]  M. Inouye,et al.  The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes , 1984, Cell.

[23]  Zsófia Kádár,et al.  Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus , 2004, Applied biochemistry and biotechnology.

[24]  Yinbo Qu,et al.  Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 , 2008 .

[25]  Richard Sparling,et al.  Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates , 2006 .

[26]  M. Desvaux Unravelling Carbon Metabolism in Anaerobic Cellulolytic Bacteria , 2006, Biotechnology progress.

[27]  A. Volbeda,et al.  Structure and electron transfer mechanism of pyruvate:ferredoxin oxidoreductase. , 1999, Current opinion in structural biology.

[28]  J. Zeikus,et al.  Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum , 1977, Applied and environmental microbiology.

[29]  M. Janssen,et al.  Editorial Biohydrogen 2002 , 2002 .

[30]  G. Sawers,et al.  Molecular characterization of the genes encoding pyruvate formate-lyase and its activating enzyme of Clostridium pasteurianum , 1996, Journal of bacteriology.

[31]  R. Sparling,et al.  Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or α-cellulose , 2008 .

[32]  Nazim Cicek,et al.  Potential for hydrogen and methane production from biomass residues in Canada. , 2007, Bioresource technology.

[33]  S. E. Nokes,et al.  Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure , 2004, Applied Microbiology and Biotechnology.

[34]  Hubert Bahl,et al.  Parameters Affecting Solvent Production by Clostridium pasteurianum , 1992, Applied and environmental microbiology.

[35]  Jo-Shu Chang,et al.  Biohydrogen production with fixed-bed bioreactors , 2002 .

[36]  R. Dinsdale,et al.  Continuous fermentative hydrogen production from a wheat starch co‐product by mixed microflora , 2003, Biotechnology and bioengineering.

[37]  Richard Sparling,et al.  Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405 , 2008, Indian Journal of Microbiology.

[38]  Matthias Wessling,et al.  Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen , 2006 .

[39]  E. Gelhaye,et al.  Colonization of Crystalline Cellulose by Clostridium cellulolyticum ATCC 35319 , 1993, Applied and environmental microbiology.

[40]  M. Desvaux,et al.  Carbon and Electron Flow in Clostridium cellulolyticum Grown in Chemostat Culture on Synthetic Medium , 1999, Journal of bacteriology.

[41]  E Setter,et al.  Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum , 1983, Journal of bacteriology.

[42]  Tetsuya Kimura,et al.  Cloning and DNA Sequencing of the Genes EncodingClostridium josui Scaffolding Protein CipA and Cellulase CelD and Identification of Their Gene Products as Major Components of the Cellulosome , 1998, Journal of bacteriology.

[43]  E. Gelhaye,et al.  Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. , 1998, Microbiology.

[44]  Eleftherios T. Papoutsakis,et al.  Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum , 1999, Applied and Environmental Microbiology.

[45]  Roy H. Doi,et al.  Cellulosomes: plant-cell-wall-degrading enzyme complexes , 2004, Nature Reviews Microbiology.

[46]  Patrick C. Hallenbeck,et al.  Biological hydrogen production; fundamentals and limiting processes , 2002 .

[47]  Lee R. Lynd,et al.  Overview and evaluation of fuel ethanol from cellulosic biomass , 1996 .

[48]  B. Methé,et al.  Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. , 2002, International journal of systematic and evolutionary microbiology.

[49]  M. Cheryan,et al.  Ethanol production in a membrane recycle bioreactor: conversion of glucose using Saccharomyces cerevisiae , 1984 .

[50]  S. Zinder,et al.  Hydrogen Partial Pressures in a Thermophilic Acetate-Oxidizing Methanogenic Coculture , 1988, Applied and environmental microbiology.

[51]  Richard Sparling,et al.  Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405 , 2009, Applied Microbiology and Biotechnology.

[52]  M. Desvaux,et al.  Carbon Flux Distribution and Kinetics of Cellulose Fermentation in Steady-State Continuous Cultures of Clostridium cellulolyticum on a Chemically Defined Medium , 2001, Journal of bacteriology.

[53]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[54]  D. S. Williams,et al.  Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. , 1990, International journal of systematic bacteriology.

[55]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[56]  J. Vandekerckhove,et al.  Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. , 1988, European journal of biochemistry.

[57]  Ding Youfang,et al.  Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. , 1991 .

[58]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[59]  P. Dhulster,et al.  Production of microbial alginate in a membrane bioreactor , 2002 .

[60]  V. V. Teplyakov,et al.  Lab-scale bioreactor integrated with active membrane system for hydrogen production : experience and prospects , 2002 .

[61]  Patrik R. Jones,et al.  Constructing and testing the thermodynamic limits of synthetic NAD(P)H:H2 pathways , 2008, Microbial biotechnology.

[62]  Lee Rybeck Lynd,et al.  Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum , 1989, Applied and environmental microbiology.

[63]  R. Mah,et al.  Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov , 1984, Applied and environmental microbiology.

[64]  N. Gilkes,et al.  Cellulose hydrolysis by bacteria and fungi. , 1995, Advances in microbial physiology.

[65]  R. Doi Cellulases of Mesophilic Microorganisms , 2008, Annals of the New York Academy of Sciences.

[66]  Nazim Cicek,et al.  Using a membrane bioreactor to reclaim wastewater , 1998 .

[67]  Richard Sparling,et al.  Formate synthesis by Clostridium thermocellum during anaerobic fermentation. , 2006, Canadian journal of microbiology.

[68]  J. Zeikus,et al.  Ethanol Production by Thermophilic Bacteria: Relationship Between Fermentation Product Yields of and Catabolic Enzyme Activities in Clostridium thermocellum and Thermoanaerobium brockii , 1980, Journal of bacteriology.

[69]  August Böck,et al.  The molecular biology of formate metabolism in enterobacteria. , 2002, Journal of molecular microbiology and biotechnology.

[70]  C. Veeger,et al.  Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism , 1991, Journal of bacteriology.

[71]  K. Chung Inhibitory effects of H2 on growth of Clostridium cellobioparum , 1976, Applied and environmental microbiology.

[72]  Seung‐Won Park,et al.  Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. , 2006, Journal of bioscience and bioengineering.

[73]  M. Desvaux Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. , 2005, FEMS microbiology reviews.

[74]  Debabrata Das,et al.  Hydrogen production by biological processes: a survey of literature , 2001 .

[75]  P. Hallenbeck,et al.  Fundamentals of the fermentative production of hydrogen. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[76]  S. Leschine,et al.  Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7 , 1994, Journal of bacteriology.

[77]  A. Brauman,et al.  Clostridium termitidis sp. nov., a Cellulolytic Bacterium from the Gut of the Wood-feeding Termite, Nasutitermes lujae , 1992 .

[78]  M. Cheryan,et al.  Ethanol production in a membrane bioreactor , 2001, Applied biochemistry and biotechnology.

[79]  Christian Gaudin,et al.  Metabolism and Solubilization of Cellulose by Clostridium cellulolyticum H10 , 1985, Applied and environmental microbiology.

[80]  H. Kaspar,et al.  Palladium-Mediated Hydrogenation of Unsaturated Hydrocarbons with Hydrogen Gas Released during Anaerobic Cellulose Degradation , 1986, Applied and environmental microbiology.

[81]  Richard Sparling,et al.  Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405. , 2009, Journal of biotechnology.

[82]  D. Valentine,et al.  A culture apparatus for maintaining H2 at sub-nanomolar concentrations. , 2000, Journal of microbiological methods.

[83]  R. Doi,et al.  The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. , 2001, Chemical record.

[84]  C. R. Jones,et al.  Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus , 1997, Applied and environmental microbiology.

[85]  J. Wiegel,et al.  Elucidation of Enzymes in Fermentation Pathways Used by Clostridium thermosuccinogenes Growing on Inulin , 2000, Applied and Environmental Microbiology.

[86]  C. Woese,et al.  Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. , 1995, International journal of systematic bacteriology.

[87]  W. Schwarz The cellulosome and cellulose degradation by anaerobic bacteria , 2001, Applied Microbiology and Biotechnology.

[88]  M. Desvaux,et al.  Kinetics and Metabolism of Cellulose Degradation at High Substrate Concentrations in Steady-State Continuous Cultures of Clostridium cellulolyticum on a Chemically Defined Medium , 2001, Applied and Environmental Microbiology.

[89]  E. Stackebrandt,et al.  Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.

[90]  D. Bagley,et al.  Supersaturation of Dissolved H2 and CO2 During Fermentative Hydrogen Production with N2 Sparging , 2006, Biotechnology Letters.

[91]  R. Hedderich,et al.  A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.

[92]  A. Demain,et al.  Cellulase, Clostridia, and Ethanol , 2005, Microbiology and Molecular Biology Reviews.

[93]  Sheng-Shung Cheng,et al.  Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane , 2002 .

[94]  K. Dawson,et al.  Carbohydrate Transport by the Anaerobic Thermophile Clostridium thermocellum LQRI , 1995, Applied and environmental microbiology.

[95]  L. Lynd,et al.  Consolidated bioprocessing of cellulosic biomass: an update. , 2005, Current opinion in biotechnology.

[96]  T. Fukui,et al.  Genetic Evidence Identifying the True Gluconeogenic Fructose-1,6-Bisphosphatase in Thermococcus kodakaraensis and Other Hyperthermophiles , 2004, Journal of bacteriology.

[97]  Emmanuel Guedon,et al.  Improvement of Cellulolytic Properties of Clostridium cellulolyticum by Metabolic Engineering , 2002, Applied and Environmental Microbiology.

[98]  D. L. Hawkes,et al.  Enhancement of hydrogen production from glucose by nitrogen gas sparging. , 2000 .

[99]  Robert M. Kelly,et al.  Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus , 2008, Applied and Environmental Microbiology.

[100]  Volker Müller,et al.  Discovery of a Ferredoxin:NAD+‐Oxidoreductase (Rnf) in Acetobacterium woodii , 2008, Annals of the New York Academy of Sciences.

[101]  S. Leschine,et al.  Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. , 2001, International journal of systematic and evolutionary microbiology.

[102]  M. Adams The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria , 1990 .