High Rate of Chimeric Gene Origination by Retroposition in Plant Genomes[W]

Retroposition is widely found to play essential roles in origination of new mammalian and other animal genes. However, the scarcity of retrogenes in plants has led to the assumption that plant genomes rarely evolve new gene duplicates by retroposition, despite abundant retrotransposons in plants and a reported long terminal repeat (LTR) retrotransposon-mediated mechanism of retroposing cellular genes in maize (Zea mays). We show extensive retropositions in the rice (Oryza sativa) genome, with 1235 identified primary retrogenes. We identified 27 of these primary retrogenes within LTR retrotransposons, confirming a previously observed role of retroelements in generating plant retrogenes. Substitution analyses revealed that the vast majority are subject to negative selection, suggesting, along with expression data and evidence of age, that they are likely functional retrogenes. In addition, 42% of these retrosequences have recruited new exons from flanking regions, generating a large number of chimerical genes. We also identified young chimerical genes, suggesting that gene origination through retroposition is ongoing, with a rate an order of magnitude higher than the rate in primates. Finally, we observed that retropositions have followed an unexpected spatial pattern in which functional retrogenes avoid centromeric regions, while retropseudogenes are randomly distributed. These observations suggest that retroposition is an important mechanism that governs gene evolution in rice and other grass species.

[1]  W. Richard McCombie,et al.  Sorghum Genome Sequencing by Methylation Filtration , 2005, PLoS biology.

[2]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[3]  J. Jurka,et al.  Repeats in genomic DNA: mining and meaning. , 1998, Current opinion in structural biology.

[4]  J. Kawai,et al.  Collection, Mapping, and Annotation of Over 28,000 cDNA Clones from japonica Rice , 2003, Science.

[5]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[6]  J. Bennetzen,et al.  Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Nisole,et al.  A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[9]  D. Charlesworth,et al.  The evolution of the alcohol dehydrogenase gene family by loss of introns in plants of the genus Leavenworthia (Brassicaceae). , 1998, Molecular biology and evolution.

[10]  Dawei Li,et al.  The Genomes of Oryza sativa: A History of Duplications , 2005, PLoS biology.

[11]  G. Karpen,et al.  The case for epigenetic effects on centromere identity and function. , 1997, Trends in genetics : TIG.

[12]  Kevin R. Thornton,et al.  Retroposed new genes out of the X in Drosophila. , 2002, Genome research.

[13]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[14]  M. Boguski,et al.  dbEST — database for “expressed sequence tags” , 1993, Nature Genetics.

[15]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[16]  Jianxin Ma,et al.  Rapid recent growth and divergence of rice nuclear genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Brosius,et al.  Retroposons--seeds of evolution. , 1991, Science.

[18]  S. L. Wong,et al.  Extensive Gene Traffic on the Mammalian X Chromosome , 2022 .

[19]  K. Tamura,et al.  A Novel Chimeric Gene, siren, With Retroposed Promoter Sequence in the Drosophila bipectinata Complex , 2005, Genetics.

[20]  Jian Wang,et al.  A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. , 2005, Genome research.

[21]  Stilianos Arhondakis,et al.  Base composition and expression level of human genes. , 2004, Gene.

[22]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[23]  Henrik Kaessmann,et al.  Sex Chromosomes and Male Functions: Where Do New Genes Go? , 2004, Cell cycle.

[24]  J. Bennetzen,et al.  Transposable elements, gene creation and genome rearrangement in flowering plants. , 2005, Current opinion in genetics & development.

[25]  Jennifer Daub,et al.  Expressed sequence tags: medium-throughput protocols. , 2004, Methods in molecular biology.

[26]  H. Saedler,et al.  Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons , 1987, The EMBO journal.

[27]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[28]  Corbin D. Jones,et al.  Parallel evolution of chimeric fusion genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[31]  N. Vinckenbosch,et al.  Evolutionary fate of retroposed gene copies in the human genome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. McDonald,et al.  Long terminal repeat retrotransposons of Oryza sativa , 2002, Genome Biology.

[33]  Kevin R. Thornton,et al.  The origin of new genes: glimpses from the young and old , 2003, Nature Reviews Genetics.

[34]  J. Bedell,et al.  Reduced representation sequencing: a success in maize and a promise for other plant genomes. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  E. Birney,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002, Nature.

[36]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[37]  References , 1971 .

[38]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[39]  J. Bennetzen,et al.  Plant retrotransposons. , 1999, Annual review of genetics.

[40]  J Quackenbush,et al.  Enrichment of Gene-Coding Sequences in Maize by Genome Filtration , 2003, Science.

[41]  John F. McDonald,et al.  LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..

[42]  Ram Samudrala,et al.  Mouse transcriptome: Neutral evolution of ‘non-coding’ complementary DNAs , 2004, Nature.

[43]  M. Boguski,et al.  Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.

[44]  Gynheung An,et al.  The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice , 2003, Plant Molecular Biology.

[45]  M. Morgante,et al.  Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize , 2005, Nature Genetics.

[46]  M. Long,et al.  Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. , 1993, Science.

[47]  Yujun Zhang,et al.  Computational Identification of 69 Retroposons in Arabidopsis1[w] , 2005, Plant Physiology.

[48]  Wen-Hsiung Li,et al.  The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. , 2002, Genome research.

[49]  L. Duret,et al.  Nature and structure of human genes that generate retropseudogenes. , 2000, Genome research.

[50]  E. Nevo,et al.  Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[52]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[53]  Richard S. J. Frackowiak,et al.  Neurolinguistics: Structural plasticity in the bilingual brain , 2004, Nature.

[54]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[55]  G. Drouin,et al.  Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes , 1990, Journal of Molecular Evolution.

[56]  Jianxin Ma,et al.  Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. , 2004, Genome research.

[57]  Richard C. Moore,et al.  The early stages of duplicate gene evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Ostertag,et al.  Biology of mammalian L1 retrotransposons. , 2001, Annual review of genetics.

[59]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[60]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[61]  R. Martienssen,et al.  Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats , 2005, PLoS genetics.

[62]  B. Charlesworth,et al.  Steps in the evolution of heteromorphic sex chromosomes , 2005, Heredity.

[63]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[64]  J. Bennetzen,et al.  Structure and coding properties of Bs1, a maize retrovirus-like transposon. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[66]  A. Reymond,et al.  Emergence of Young Human Genes after a Burst of Retroposition in Primates , 2005, PLoS biology.

[67]  Sean R. Eddy,et al.  Pack-MULE transposable elements mediate gene evolution in plants , 2004, Nature.

[68]  E. Kellogg,et al.  Evolutionary history of the grasses. , 2001, Plant physiology.

[69]  A. Gentles,et al.  Retroposition of processed pseudogenes: the impact of RNA stability and translational control. , 2006, Trends in genetics : TIG.

[70]  M. Long,et al.  Evolving protein functional diversity in new genes of Drosophila. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. Patthy Genome evolution and the evolution of exon-shuffling--a review. , 1999, Gene.

[72]  J. Bennetzen,et al.  Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. , 1994, The Plant cell.