Piezoelectric and ferroelectric materials: Fundamentals, recent progress, and applications

[1]  Qian Li,et al.  Composition and electrical properties characterization of a 5” diameter PIN-PMN-PT single crystal by the modified Bridgman method , 2021 .

[2]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[3]  Yiquan Wu,et al.  Current status of solid-state single crystal growth , 2020, BMC Materials.

[4]  Shuxiang Dong,et al.  Piezoelectric Actuators and Motors: Materials, Designs, and Applications , 2019, Advanced Materials Technologies.

[5]  D. Viehland,et al.  Large Piezoelectricity in Ternary Lead‐Free Single Crystals , 2019, Advanced Electronic Materials.

[6]  T. Song,et al.  Thermal Quenching Effects on the Ferroelectric and Piezoelectric Properties of BiFeO3–BaTiO3 Ceramics , 2019, ACS Applied Electronic Materials.

[7]  Bin Xu,et al.  Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2019, Science.

[8]  Huicong Liu,et al.  A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications , 2018, Applied Physics Reviews.

[9]  Alicia Manjón-Sanz,et al.  Applications of Piezoelectrics: Old and New , 2018, Chemistry of Materials.

[10]  Jacob L. Jones,et al.  Deconvolved intrinsic and extrinsic contributions to electrostrain in high performance, Nb-doped Pb(Zr Ti1-)O3 piezoceramics (0.50 ≤ x ≤ 0.56) , 2018, Acta Materialia.

[11]  Jianguo Zhu,et al.  Recent development in lead-free perovskite piezoelectric bulk materials , 2018, Progress in Materials Science.

[12]  Xiaoning Jiang,et al.  Recent Developments in Piezoelectric Crystals , 2018, Journal of the Korean Ceramic Society.

[13]  Fei Li,et al.  Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics , 2018, Advanced Functional Materials.

[14]  Z. Ye,et al.  Polar domain structural evolution under electric field and temperature in the (Bi 0.5 Na 0.5 )TiO 3 ‐0.06BaTiO 3 piezoceramics , 2018, Journal of the American Ceramic Society.

[15]  X. Tan,et al.  High-Performance Piezoelectric Crystals, Ceramics, and Films , 2018, Annual Review of Materials Research.

[16]  Shengxi Zhou,et al.  High-Performance Piezoelectric Energy Harvesters and Their Applications , 2018 .

[17]  Ming Liu,et al.  Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics. , 2018, ACS applied materials & interfaces.

[18]  J. Zhai,et al.  Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3‐Based Lead‐Free Ceramics , 2018, Advanced materials.

[19]  W. Cao,et al.  Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering. , 2017, ACS applied materials & interfaces.

[20]  Zhenxiang Cheng,et al.  The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals , 2016, Nature Communications.

[21]  Jianguo Zhu,et al.  Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures , 2016 .

[22]  Jianguo Zhu,et al.  Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. , 2016, Journal of the American Chemical Society.

[23]  Jianguo Zhu,et al.  Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead‐Free Ceramics , 2016, Advanced materials.

[24]  R. Sahul,et al.  Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations , 2016, Science Advances.

[25]  Dragan Damjanovic,et al.  Piezoelectric response of BiFeO3 ceramics at elevated temperatures , 2016 .

[26]  W. Cao,et al.  Formation mechanism of highly [0 0 1]c textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity , 2016 .

[27]  Tae Kwon Song,et al.  High‐Performance Lead‐Free Piezoceramics with High Curie Temperatures , 2015, Advanced materials.

[28]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[29]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[30]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[31]  Ji-Hoon Park,et al.  Solid‐State Conversion of Single Crystals: The Principle and the State‐of‐the‐Art , 2015 .

[32]  Prasanta Kumar Panda,et al.  PZT to Lead Free Piezo Ceramics: A Review , 2015 .

[33]  N. Zhang,et al.  The missing boundary in the phase diagram of PbZr1−xTixO3 , 2014, Nature Communications.

[34]  Wenwu Cao,et al.  Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. , 2014, Progress in materials science.

[35]  Jacob L. Jones,et al.  BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties , 2014 .

[36]  Longtu Li,et al.  Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics , 2014 .

[37]  Cheng Yu,et al.  The Development of Micromachined Gyroscope Structure and Circuitry Technology , 2014, Sensors.

[38]  Ke Wang,et al.  (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .

[39]  Jianguo Zhu,et al.  Lead-free piezoelectrics based on potassium-sodium niobate with giant d(33). , 2013, ACS applied materials & interfaces.

[40]  Shashank Priya,et al.  Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response , 2013 .

[41]  I. Reaney,et al.  Nano‐ and Mesoscale Structure of Na$_{1 \over 2}$Bi$_{1 \over 2}$TiO3: A TEM Perspective , 2012 .

[42]  H. zur Loye,et al.  Materials discovery by flux crystal growth: quaternary and higher order oxides. , 2012, Angewandte Chemie.

[43]  Shujun Zhang,et al.  Piezoelectric Materials for High Temperature Sensors , 2011 .

[44]  Haijun Wu,et al.  Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics , 2011 .

[45]  T. Shrout,et al.  Critical Property in Relaxor‐PbTiO3 Single Crystals – Shear Piezoelectric Response , 2011, Advanced functional materials.

[46]  Sebastian Thrun,et al.  Towards fully autonomous driving: Systems and algorithms , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[47]  Yu. N. Shapovalov,et al.  Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions , 2011 .

[48]  T. Shrout,et al.  High temperature ReCOB piezocrystals: Recent developments , 2011 .

[49]  Wei Wang,et al.  The compositional segregation, phase structure and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal , 2011 .

[50]  D. London Experimental synthesis and stability of tourmaline: a historical overview , 2011 .

[51]  T. Park,et al.  Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics , 2011 .

[52]  Jingfeng Li,et al.  Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure , 2010 .

[53]  A. Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[54]  Xiu-yu Li,et al.  Preparation and Characterization of New Pb(Yb1/2Nb1/2)O-3-Pb(Mg1/3Nb2/3)O-3-PbTiO3 Ternary Piezo-/Ferroelectric Crystals , 2010 .

[55]  R. Zuo,et al.  Antimony Tuned Rhombohedral-Orthorhombic Phase Transition and Enhanced Piezoelectric Properties in Sodium Potassium Niobate , 2010 .

[56]  Michael J. Reece,et al.  Piezoelectric Ceramics with Super-High Curie Points , 2009 .

[57]  Srinivas Tadigadapa,et al.  Piezoelectric MEMS sensors: state-of-the-art and perspectives , 2009 .

[58]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[59]  H. Nagata,et al.  Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics , 2009 .

[60]  Z. Ye High-Performance Piezoelectric Single Crystals of Complex Perovskite Solid Solutions , 2009 .

[61]  Xiu-yu Li,et al.  Growth and Di-/Piezoelectric Properties of Al-Doped PMN-30PT Single Crystals , 2009 .

[62]  P. Laoratanakul,et al.  Physical properties and phase transitions in perovskite Pb[Zr1−x(Ni1/3Nb2/3)x]O3 (0.0 ⩽ x ⩽ 0.5) ceramics , 2008 .

[63]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[64]  M. Villegas,et al.  Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics , 2008 .

[65]  X. Long,et al.  Top-seeded solution growth and characterization of rhombohedral PMN–30PT piezoelectric single crystals , 2007 .

[66]  R. Theissmann,et al.  Nanodomains in morphotropic lead zirconate titanate ceramics : on the origin of the strong piezoelectric effect , 2007 .

[67]  Jingfeng Li,et al.  High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature , 2007 .

[68]  Matthew J. Davis,et al.  Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics , 2007, cond-mat/0703121.

[69]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[70]  Matthew J. Davis Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals , 2007 .

[71]  C. Randall,et al.  High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge , 2005 .

[72]  M. Harmer,et al.  Single Crystals of Pb(Mg1/3Nb2/3)O3—35 mol% PbTiO3 from Polycrystalline Precursors , 2005 .

[73]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[74]  S. Trolier-McKinstry,et al.  Fabrication and Electrical Properties of Textured Sr0.53Ba0.47Nb2O6 Ceramics by Templated Grain Growth , 2004 .

[75]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[76]  X. Tan,et al.  The morphotropic phase boundary and dielectric properties of the xPb(Zr1∕2Ti1∕2)O3-(1−x)Pb(Ni1∕3Nb2∕3)O3 perovskite solid solution , 2004 .

[77]  S. Uda,et al.  Growth of langasite via Bridgman technique along [ 0 0 0 1 ], [ 2 1 1 0 ] and [ 0 1 1 1 ] for , 2004 .

[78]  Thomas R. Shrout,et al.  High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system , 2003 .

[79]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[80]  P. Rehrig,et al.  Templated Grain Growth of Textured Piezoelectric Ceramics , 2001 .

[81]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[82]  Ewa M. Goldys,et al.  Shear piezoelectric coefficients of gallium nitride and aluminum nitride , 1999 .

[83]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[84]  L. E. Cross,et al.  A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.

[85]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[86]  Jung-Nam Kim,et al.  The study of ferroelectricity and phase transition in Li2B4O7single crystals , 1997 .

[87]  M. Glinchuk,et al.  A random field theory based model for ferroelectric relaxors , 1996 .

[88]  A. Bell Calculations of dielectric properties from the superparaelectric model of relaxors , 1993 .

[89]  L. E. Cross,et al.  The glassy behavior of relaxor ferroelectrics , 1991 .

[90]  Thomas R. Shrout,et al.  Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary , 1990 .

[91]  R. Blinc The soft mode concept and the history of ferroelectricity , 1987 .

[92]  G. Smolensky Ferroelectrics with diffuse phase transition , 1984 .

[93]  A. A. Kaminskii,et al.  Investigation of trigonal (La1−xNdx)3Ga5SiO14 crystals. I. Growth and optical Properties , 1983 .

[94]  L. E. Cross,et al.  Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics , 1983 .

[95]  T. Kruzina,et al.  X-ray study of phase transitions in efrroelectric Na0.5Bi0.5TiO3 , 1982 .

[96]  J. V. Biggers,et al.  Fabrication and electrical properties of grain oriented Bi4Ti3O12 ceramics , 1981 .

[97]  R. Newnham,et al.  Grain‐Oriented PbNb2O6 Ceramics , 1981 .

[98]  F. S. Welsh,et al.  Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .

[99]  E. Subbarao,et al.  A family of ferroelectric bismuth compounds , 1962 .

[100]  W. Cochran Crystal Stability and the Theory of Ferroelectricity , 1959 .

[101]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[102]  A. F. Devonshire CIX. Theory of barium titanate—Part II , 1951 .

[103]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[104]  C. Raman,et al.  The α-β; Transformation of Quartz , 1940, Nature.

[105]  X. Tan,et al.  Giant Strains in Non‐Textured (Bi1/2Na1/2)TiO3‐Based Lead‐Free Ceramics , 2016, Advanced materials.

[106]  Nazmul Haque Mondol,et al.  Well Logging: Principles, Applications and Uncertainties , 2015 .

[107]  Toshio Kimura Application of texture engineering to piezoelectric ceramics : A review , 2006 .

[108]  T. Tani Texture engineering of electronic ceramics by the reactive-templated grain growth method , 2006 .

[109]  L. Cross Relaxorferroelectrics: An overview , 1994 .

[110]  N. Yamada,et al.  A new ferroelectric: La2Ti2o7 , 1974 .